Skip to content
Snippets Groups Projects
Commit e5542e80 authored by Sébastien Bouchard's avatar Sébastien Bouchard
Browse files

Removal of another useless premise (map_config_merge)

parent 5c3cb075
No related branches found
No related tags found
No related merge requests found
...@@ -342,7 +342,6 @@ apply (update_compat ...@@ -342,7 +342,6 @@ apply (update_compat
config); auto. config); auto.
+ rewrite <- (map_config_id config) at 2. rewrite map_config_merge. + rewrite <- (map_config_id config) at 2. rewrite map_config_merge.
- f_equiv. intros x y Hxy. simpl. now rewrite Bijection.retraction_section. - f_equiv. intros x y Hxy. simpl. now rewrite Bijection.retraction_section.
- auto.
- simpl. repeat intro. now subst. - simpl. repeat intro. now subst.
+ unfold lift_path; cbn -[straight_path isobarycenter]. + unfold lift_path; cbn -[straight_path isobarycenter].
intro. now rewrite Bijection.retraction_section, Hda. intro. now rewrite Bijection.retraction_section, Hda.
......
...@@ -362,7 +362,6 @@ apply get_location_compat, update_compat; auto. ...@@ -362,7 +362,6 @@ apply get_location_compat, update_compat; auto.
(lift (existT precondition (frame_choice_bijection sim) (lift (existT precondition (frame_choice_bijection sim)
(precondition_satisfied da config g)) x))); try reflexivity; []. (precondition_satisfied da config g)) x))); try reflexivity; [].
rewrite 2 get_location_lift. simpl. rewrite Bijection.retraction_section. apply Hxy. rewrite 2 get_location_lift. simpl. rewrite Bijection.retraction_section. apply Hxy.
- autoclass.
- apply lift_compat. intros x y Hxy. now rewrite Hxy. - apply lift_compat. intros x y Hxy. now rewrite Hxy.
+ +
Admitted. (* Peleg's gathering in FSYNC: round_simplify -> hypothesis missing on the demon *) Admitted. (* Peleg's gathering in FSYNC: round_simplify -> hypothesis missing on the demon *)
......
...@@ -177,7 +177,7 @@ Lemma map_config_id `{State} `{Names} : forall config, ...@@ -177,7 +177,7 @@ Lemma map_config_id `{State} `{Names} : forall config,
Proof using . now repeat intro. Qed. Proof using . now repeat intro. Qed.
Lemma map_config_merge `{Location} {T U V : Type} `{@State _ T} `{@State _ U} `{@State _ V} `{Names} : Lemma map_config_merge `{Location} {T U V : Type} `{@State _ T} `{@State _ U} `{@State _ V} `{Names} :
forall (f : T -> U) (g : U -> V), Proper (equiv ==> equiv) f -> Proper (equiv ==> equiv) g -> forall (f : T -> U) (g : U -> V), Proper (equiv ==> equiv) g ->
forall config : configuration, map_config g (map_config f config) == map_config (fun x => g (f x)) config. forall config : configuration, map_config g (map_config f config) == map_config (fun x => g (f x)) config.
Proof using . now repeat intro. Qed. Proof using . now repeat intro. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment