Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DAPPLE-2.0
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Rania Talbi
DAPPLE-2.0
Commits
64b78c68
Commit
64b78c68
authored
3 years ago
by
rtalbi
Browse files
Options
Downloads
Patches
Plain Diff
non-privacy presrerving neural networks
parent
8a133300
No related branches found
No related tags found
No related merge requests found
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
.idea/workspace.xml
+94
-126
94 additions, 126 deletions
.idea/workspace.xml
ML/NN/NN.cpp
+77
-29
77 additions, 29 deletions
ML/NN/NN.cpp
ML/NN/NN.h
+4
-3
4 additions, 3 deletions
ML/NN/NN.h
with
175 additions
and
158 deletions
.idea/workspace.xml
+
94
−
126
View file @
64b78c68
This diff is collapsed.
Click to expand it.
ML/NN/NN.cpp
+
77
−
29
View file @
64b78c68
...
@@ -58,13 +58,13 @@ NN::NN(double alpha, int epochs, int batchSize, float th, DatasetReader *dt, str
...
@@ -58,13 +58,13 @@ NN::NN(double alpha, int epochs, int batchSize, float th, DatasetReader *dt, str
}
}
vector
<
float
>
NN
::
forward_layer
(
vector
<
neuron
*>
layer
,
vector
<
float
>
x
,
bool
test
){
vector
<
vector
<
float
>
>
NN
::
forward_layer
(
vector
<
neuron
*>
layer
,
vector
<
vector
<
float
>
>
x
,
bool
test
){
vector
<
float
>
res
;
vector
<
vector
<
float
>
>
res
;
for
(
int
j
=
0
;
j
<
layer
.
size
();
j
++
)
for
(
int
j
=
0
;
j
<
layer
.
size
();
j
++
)
{
{
neuron
*
n
=
layer
[
j
];
neuron
*
n
=
layer
[
j
];
res
.
push_back
(
n
->
predict
(
x
,
test
));
res
.
push_back
(
n
->
predict
_batch
(
x
,
test
));
}
}
return
res
;
return
res
;
...
@@ -72,36 +72,55 @@ vector<float> NN::forward_layer(vector<neuron*> layer, vector<float> x, bool tes
...
@@ -72,36 +72,55 @@ vector<float> NN::forward_layer(vector<neuron*> layer, vector<float> x, bool tes
}
}
int
NN
::
predict
(
Record
*
r
,
bool
test
)
{
vector
<
int
>
NN
::
predict
(
vector
<
Record
*
>
R
,
bool
test
)
{
vector
<
float
>
x
=
vector
<
float
>
(
r
->
values
.
begin
(),
r
->
values
.
end
());
vector
<
vector
<
float
>>
XB
;
for
(
int
i
=
0
;
i
<
R
.
size
();
i
++
)
{
Record
*
r
=
R
[
i
];
vector
<
float
>
x
=
vector
<
float
>
(
r
->
values
.
begin
(),
r
->
values
.
end
());
XB
.
push_back
(
x
);
}
for
(
int
i
=
0
;
i
<
network
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
network
.
size
();
i
++
)
{
{
x
=
forward_layer
(
network
[
i
],
x
,
test
);
XB
=
forward_layer
(
network
[
i
],
XB
,
test
);
}
}
float
max
=
-
1.0
;
int
argmax
=
0
;
vector
<
int
>
res
;
for
(
int
j
=
0
;
j
<
x
.
size
();
j
++
)
for
(
int
j
=
0
;
j
<
XB
.
size
();
j
++
)
{
{
if
(
x
[
j
]
>
max
)
{
vector
<
float
>
x
=
XB
[
j
];
max
=
x
[
j
];
float
max
=
-
1.0
;
argmax
=
j
;
int
argmax
=
0
;
}
for
(
int
k
=
0
;
k
<
x
.
size
();
k
++
)
{
if
(
x
[
k
]
>
max
)
{
max
=
x
[
k
];
argmax
=
k
;
}
}
res
.
push_back
(
argmax
);
}
}
return
argmax
;
return
res
;
}
}
vector
<
vector
<
float
>>
NN
::
backpropagate_layer
(
vector
<
neuron
*>
layer
,
vector
<
vector
<
float
>>
XB
,
vector
<
vector
<
float
>>
ytrue
)
{
vector
<
vector
<
float
>>
NN
::
backpropagate_layer
(
vector
<
neuron
*>
layer
,
vector
<
vector
<
float
>>
ytrue
)
{
vector
<
vector
<
float
>>
new_output_layer
;
vector
<
vector
<
float
>>
new_output_layer
;
for
(
int
i
=
0
;
i
<
ytrue
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
ytrue
.
size
();
i
++
)
{
{
vector
<
vector
<
float
>>
XB
=
layer
[
i
]
->
previous_input
;
layer
[
i
]
->
train
(
XB
,
ytrue
[
i
]);
layer
[
i
]
->
train
(
XB
,
ytrue
[
i
]);
vector
<
float
>
new_output_neuron
=
layer
[
i
]
->
new_output
;
vector
<
float
>
new_output_neuron
=
layer
[
i
]
->
new_output
;
new_output_layer
.
push_back
(
new_output_neuron
);
new_output_layer
.
push_back
(
new_output_neuron
);
...
@@ -110,9 +129,11 @@ vector<vector<float>> NN::backpropagate_layer(vector<neuron*> layer, vector<vect
...
@@ -110,9 +129,11 @@ vector<vector<float>> NN::backpropagate_layer(vector<neuron*> layer, vector<vect
}
}
void
NN
::
backpropagate
(
vector
<
Record
*>
XB
){
void
NN
::
backpropagate
(
vector
<
Record
*>
XB
){
forward
(
XB
);
//todo define function for forwarding a batch of records
vector
<
int
>
prediction
=
predict
(
XB
,
false
);
vector
<
vector
<
float
>>
R
;
vector
<
vector
<
float
>>
R
;
vector
<
vector
<
float
>>
ytrue
;
vector
<
vector
<
float
>>
ytrue
;
int
dim
=
XB
[
0
]
->
values
.
size
()
-
1
;
int
dim
=
XB
[
0
]
->
values
.
size
()
-
1
;
...
@@ -133,7 +154,7 @@ void NN::backpropagate(vector<Record *> XB){
...
@@ -133,7 +154,7 @@ void NN::backpropagate(vector<Record *> XB){
for
(
int
j
=
network
.
size
()
-
1
;
j
>=
0
;
j
--
)
for
(
int
j
=
network
.
size
()
-
1
;
j
>=
0
;
j
--
)
{
{
vector
<
vector
<
float
>>
new_output_layer
=
backpropagate_layer
(
network
[
j
],
ytrue
);
//todo remove the record from this method and replace it with the previous input resulting from the forward
vector
<
vector
<
float
>>
new_output_layer
=
backpropagate_layer
(
network
[
j
],
ytrue
);
ytrue
=
new_output_layer
;
ytrue
=
new_output_layer
;
}
}
...
@@ -145,6 +166,7 @@ void NN::train () //
...
@@ -145,6 +166,7 @@ void NN::train () //
int
sizeBatch
=
batchSize
;
int
sizeBatch
=
batchSize
;
int
size
=
dt
->
train_size
;
int
size
=
dt
->
train_size
;
Record
*
record
;
Record
*
record
;
vector
<
Record
*>
XB
;
extTrainBd
=
0
;
extTrainBd
=
0
;
map
<
int
,
vector
<
Record
*>>
workerBatches
;
map
<
int
,
vector
<
Record
*>>
workerBatches
;
...
@@ -153,6 +175,41 @@ void NN::train () //
...
@@ -153,6 +175,41 @@ void NN::train () //
for
(
int
epochCpt
=
0
;
epochCpt
<
epochs
;
epochCpt
++
)
{
for
(
int
epochCpt
=
0
;
epochCpt
<
epochs
;
epochCpt
++
)
{
while
(
counter
<
size
)
{
if
(
size
-
counter
<
batchSize
)
sizeBatch
=
size
-
counter
;
for
(
recordCounter
=
0
;
recordCounter
<
sizeBatch
;
recordCounter
++
)
{
try
{
record
=
dt
->
getTrainRecord
();
XB
.
push_back
(
record
);
extTrainBd
+=
record
->
values
.
size
()
+
1
;
counter
++
;
}
catch
(
std
::
exception
const
&
e
)
{
cout
<<
e
.
what
()
<<
endl
;
}
}
backpropagate
(
XB
);
for
(
int
i
=
0
;
i
<
XB
.
size
();
i
++
)
{
delete
XB
[
i
];
}
XB
.
clear
();
}
counter
=
0
;
}
}
...
@@ -164,6 +221,7 @@ void NN::train () //
...
@@ -164,6 +221,7 @@ void NN::train () //
}
}
//todo : transform this method so that prediction happens for fa test batch
void
NN
::
Test
(
){
void
NN
::
Test
(
){
int
counter
=
0
;
int
counter
=
0
;
...
@@ -178,16 +236,6 @@ void NN::Test( ){
...
@@ -178,16 +236,6 @@ void NN::Test( ){
auto
begin
=
chrono
::
high_resolution_clock
::
now
();
auto
begin
=
chrono
::
high_resolution_clock
::
now
();
while
(
counter
<
size
)
{
while
(
counter
<
size
)
{
try
{
record
=
dt
->
getTestRecord
();
//record->print();
extTestBd
+=
sizeof
(
int
)
*
record
->
values
.
size
();
}
catch
(
std
::
exception
const
&
e
)
{
//std::cout << "Exception: " << e.what() << "\n";
}
counter
++
;
counter
++
;
...
@@ -207,7 +255,7 @@ void NN::Test( ){
...
@@ -207,7 +255,7 @@ void NN::Test( ){
this
->
testTime
=
duration
.
count
();
//- removeTime;
this
->
testTime
=
duration
.
count
();
//- removeTime;
cout
<<
this
->
testTime
<<
endl
;
cout
<<
this
->
testTime
<<
endl
;
classOutput
.
close
();
classOutput
.
close
();
}
//todo use the forward function here
}
This diff is collapsed.
Click to expand it.
ML/NN/NN.h
+
4
−
3
View file @
64b78c68
...
@@ -49,17 +49,18 @@ public :
...
@@ -49,17 +49,18 @@ public :
NN
(
double
alpha
,
int
epochs
,
int
batchSize
,
float
th
,
DatasetReader
*
dt
,
string
logfile
,
bool
debug
,
string
mainpath
);
NN
(
double
alpha
,
int
epochs
,
int
batchSize
,
float
th
,
DatasetReader
*
dt
,
string
logfile
,
bool
debug
,
string
mainpath
);
public
:
public
:
int
predict
(
Record
*
r
,
bool
test
);
vector
<
int
>
predict
(
vector
<
Record
*>
R
,
bool
test
);
public
:
public
:
vector
<
vector
<
float
>>
backpropagate_layer
(
vector
<
neuron
*>
layer
,
vector
<
vector
<
float
>>
XB
,
vector
<
vector
<
float
>>
ytrue
);
vector
<
vector
<
float
>>
backpropagate_layer
(
vector
<
neuron
*>
layer
,
vector
<
vector
<
float
>>
ytrue
);
public
:
public
:
void
backpropagate
(
vector
<
Record
*>
XB
);
void
backpropagate
(
vector
<
Record
*>
XB
);
public
:
public
:
vector
<
float
>
forward_layer
(
vector
<
neuron
*>
layer
,
vector
<
float
>
x
,
bool
test
);
vector
<
vector
<
float
>
>
forward_layer
(
vector
<
neuron
*>
layer
,
vector
<
vector
<
float
>
>
x
,
bool
test
);
public
:
public
:
void
train
();
void
train
();
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment