Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
instant-ngp-tomography
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Thomas Pickles
instant-ngp-tomography
Commits
dd02fb77
Commit
dd02fb77
authored
2 years ago
by
Thomas Müller
Browse files
Options
Downloads
Patches
Plain Diff
record3d2nerf.py: fix formatting
parent
eaf853b3
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/record3d2nerf.py
+142
-142
142 additions, 142 deletions
scripts/record3d2nerf.py
with
142 additions
and
142 deletions
scripts/record3d2nerf.py
+
142
−
142
View file @
dd02fb77
...
...
@@ -20,157 +20,157 @@ from tqdm import tqdm
from
PIL
import
Image
def
rotate_img
(
img_path
,
degree
=
90
):
img
=
Image
.
open
(
img_path
)
img
=
img
.
rotate
(
degree
,
expand
=
1
)
img
.
save
(
img_path
,
quality
=
100
,
subsampling
=
0
)
img
=
Image
.
open
(
img_path
)
img
=
img
.
rotate
(
degree
,
expand
=
1
)
img
.
save
(
img_path
,
quality
=
100
,
subsampling
=
0
)
def
rotate_camera
(
c2w
,
degree
=
90
):
rad
=
np
.
deg2rad
(
degree
)
R
=
Quaternion
(
axis
=
[
0
,
0
,
-
1
],
angle
=
rad
)
T
=
R
.
transformation_matrix
return
c2w
@
T
rad
=
np
.
deg2rad
(
degree
)
R
=
Quaternion
(
axis
=
[
0
,
0
,
-
1
],
angle
=
rad
)
T
=
R
.
transformation_matrix
return
c2w
@
T
def
swap_axes
(
c2w
):
rad
=
np
.
pi
/
2
R
=
Quaternion
(
axis
=
[
1
,
0
,
0
],
angle
=
rad
)
T
=
R
.
transformation_matrix
return
T
@
c2w
rad
=
np
.
pi
/
2
R
=
Quaternion
(
axis
=
[
1
,
0
,
0
],
angle
=
rad
)
T
=
R
.
transformation_matrix
return
T
@
c2w
# Automatic rescale & offset the poses.
def
find_transforms_center_and_scale
(
raw_transforms
):
print
(
"
computing center of attention...
"
)
frames
=
raw_transforms
[
'
frames
'
]
for
frame
in
frames
:
frame
[
'
transform_matrix
'
]
=
np
.
array
(
frame
[
'
transform_matrix
'
])
rays_o
=
[]
rays_d
=
[]
for
f
in
tqdm
(
frames
):
mf
=
f
[
"
transform_matrix
"
][
0
:
3
,:]
rays_o
.
append
(
mf
[:
3
,
3
:])
rays_d
.
append
(
mf
[:
3
,
2
:
3
])
rays_o
=
np
.
asarray
(
rays_o
)
rays_d
=
np
.
asarray
(
rays_d
)
# Find the point that minimizes its distances to all rays.
def
min_line_dist
(
rays_o
,
rays_d
):
A_i
=
np
.
eye
(
3
)
-
rays_d
*
np
.
transpose
(
rays_d
,
[
0
,
2
,
1
])
b_i
=
-
A_i
@
rays_o
pt_mindist
=
np
.
squeeze
(
-
np
.
linalg
.
inv
((
np
.
transpose
(
A_i
,
[
0
,
2
,
1
])
@
A_i
).
mean
(
0
))
@
(
b_i
).
mean
(
0
))
return
pt_mindist
translation
=
min_line_dist
(
rays_o
,
rays_d
)
normalized_transforms
=
copy
.
deepcopy
(
raw_transforms
)
for
f
in
normalized_transforms
[
"
frames
"
]:
f
[
"
transform_matrix
"
][
0
:
3
,
3
]
-=
translation
# Find the scale.
avglen
=
0.
for
f
in
normalized_transforms
[
"
frames
"
]:
avglen
+=
np
.
linalg
.
norm
(
f
[
"
transform_matrix
"
][
0
:
3
,
3
])
nframes
=
len
(
normalized_transforms
[
"
frames
"
])
avglen
/=
nframes
print
(
"
avg camera distance from origin
"
,
avglen
)
scale
=
4.0
/
avglen
# scale to "nerf sized"
return
translation
,
scale
print
(
"
computing center of attention...
"
)
frames
=
raw_transforms
[
'
frames
'
]
for
frame
in
frames
:
frame
[
'
transform_matrix
'
]
=
np
.
array
(
frame
[
'
transform_matrix
'
])
rays_o
=
[]
rays_d
=
[]
for
f
in
tqdm
(
frames
):
mf
=
f
[
"
transform_matrix
"
][
0
:
3
,:]
rays_o
.
append
(
mf
[:
3
,
3
:])
rays_d
.
append
(
mf
[:
3
,
2
:
3
])
rays_o
=
np
.
asarray
(
rays_o
)
rays_d
=
np
.
asarray
(
rays_d
)
# Find the point that minimizes its distances to all rays.
def
min_line_dist
(
rays_o
,
rays_d
):
A_i
=
np
.
eye
(
3
)
-
rays_d
*
np
.
transpose
(
rays_d
,
[
0
,
2
,
1
])
b_i
=
-
A_i
@
rays_o
pt_mindist
=
np
.
squeeze
(
-
np
.
linalg
.
inv
((
np
.
transpose
(
A_i
,
[
0
,
2
,
1
])
@
A_i
).
mean
(
0
))
@
(
b_i
).
mean
(
0
))
return
pt_mindist
translation
=
min_line_dist
(
rays_o
,
rays_d
)
normalized_transforms
=
copy
.
deepcopy
(
raw_transforms
)
for
f
in
normalized_transforms
[
"
frames
"
]:
f
[
"
transform_matrix
"
][
0
:
3
,
3
]
-=
translation
# Find the scale.
avglen
=
0.
for
f
in
normalized_transforms
[
"
frames
"
]:
avglen
+=
np
.
linalg
.
norm
(
f
[
"
transform_matrix
"
][
0
:
3
,
3
])
nframes
=
len
(
normalized_transforms
[
"
frames
"
])
avglen
/=
nframes
print
(
"
avg camera distance from origin
"
,
avglen
)
scale
=
4.0
/
avglen
# scale to "nerf sized"
return
translation
,
scale
def
normalize_transforms
(
transforms
,
translation
,
scale
):
normalized_transforms
=
copy
.
deepcopy
(
transforms
)
for
f
in
normalized_transforms
[
"
frames
"
]:
f
[
"
transform_matrix
"
]
=
np
.
asarray
(
f
[
"
transform_matrix
"
])
f
[
"
transform_matrix
"
][
0
:
3
,
3
]
-=
translation
f
[
"
transform_matrix
"
][
0
:
3
,
3
]
*=
scale
f
[
"
transform_matrix
"
]
=
f
[
"
transform_matrix
"
].
tolist
()
return
normalized_transforms
normalized_transforms
=
copy
.
deepcopy
(
transforms
)
for
f
in
normalized_transforms
[
"
frames
"
]:
f
[
"
transform_matrix
"
]
=
np
.
asarray
(
f
[
"
transform_matrix
"
])
f
[
"
transform_matrix
"
][
0
:
3
,
3
]
-=
translation
f
[
"
transform_matrix
"
][
0
:
3
,
3
]
*=
scale
f
[
"
transform_matrix
"
]
=
f
[
"
transform_matrix
"
].
tolist
()
return
normalized_transforms
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
"
convert a Record3D capture to nerf format transforms.json
"
)
parser
.
add_argument
(
"
--scene
"
,
default
=
""
,
help
=
"
path to the Record3D capture
"
)
parser
.
add_argument
(
"
--rotate
"
,
action
=
"
store_true
"
,
help
=
"
rotate the dataset
"
)
parser
.
add_argument
(
"
--subsample
"
,
default
=
1
,
type
=
int
,
help
=
"
step size of subsampling
"
)
args
=
parser
.
parse_args
()
return
args
parser
=
argparse
.
ArgumentParser
(
description
=
"
convert a Record3D capture to nerf format transforms.json
"
)
parser
.
add_argument
(
"
--scene
"
,
default
=
""
,
help
=
"
path to the Record3D capture
"
)
parser
.
add_argument
(
"
--rotate
"
,
action
=
"
store_true
"
,
help
=
"
rotate the dataset
"
)
parser
.
add_argument
(
"
--subsample
"
,
default
=
1
,
type
=
int
,
help
=
"
step size of subsampling
"
)
args
=
parser
.
parse_args
()
return
args
if
__name__
==
"
__main__
"
:
args
=
parse_args
()
dataset_dir
=
Path
(
args
.
scene
)
with
open
(
dataset_dir
/
'
metadata
'
)
as
f
:
metadata
=
json
.
load
(
f
)
frames
=
[]
n_images
=
len
(
list
((
dataset_dir
/
'
rgbd
'
).
glob
(
'
*.jpg
'
)))
poses
=
np
.
array
(
metadata
[
'
poses
'
])
for
idx
in
tqdm
(
range
(
n_images
)):
# Link the image.
img_name
=
f
'
{
idx
}
.jpg
'
img_path
=
dataset_dir
/
'
rgbd
'
/
img_name
# Rotate the image.
if
args
.
rotate
:
# TODO: parallelize this step with joblib.
rotate_img
(
img_path
)
# Extract c2w.
"""
Each `pose` is a 7-element tuple which contains quaternion + world position.
[qx, qy, qz, qw, tx, ty, tz]
"""
pose
=
poses
[
idx
]
q
=
Quaternion
(
x
=
pose
[
0
],
y
=
pose
[
1
],
z
=
pose
[
2
],
w
=
pose
[
3
])
c2w
=
np
.
eye
(
4
)
c2w
[:
3
,
:
3
]
=
q
.
rotation_matrix
c2w
[:
3
,
-
1
]
=
[
pose
[
4
],
pose
[
5
],
pose
[
6
]]
if
args
.
rotate
:
c2w
=
rotate_camera
(
c2w
)
c2w
=
swap_axes
(
c2w
)
frames
.
append
(
{
"
file_path
"
:
f
"
./rgbd/
{
img_name
}
"
,
"
transform_matrix
"
:
c2w
.
tolist
(),
}
)
# Write intrinsics to `cameras.txt`.
if
not
args
.
rotate
:
h
=
metadata
[
'
h
'
]
w
=
metadata
[
'
w
'
]
K
=
np
.
array
(
metadata
[
'
K
'
]).
reshape
([
3
,
3
]).
T
fx
=
K
[
0
,
0
]
fy
=
K
[
1
,
1
]
cx
=
K
[
0
,
2
]
cy
=
K
[
1
,
2
]
else
:
h
=
metadata
[
'
w
'
]
w
=
metadata
[
'
h
'
]
K
=
np
.
array
(
metadata
[
'
K
'
]).
reshape
([
3
,
3
]).
T
fx
=
K
[
1
,
1
]
fy
=
K
[
0
,
0
]
cx
=
K
[
1
,
2
]
cy
=
h
-
K
[
0
,
2
]
transforms
=
{}
transforms
[
'
fl_x
'
]
=
fx
transforms
[
'
fl_y
'
]
=
fy
transforms
[
'
cx
'
]
=
cx
transforms
[
'
cy
'
]
=
cy
transforms
[
'
w
'
]
=
w
transforms
[
'
h
'
]
=
h
transforms
[
'
aabb_scale
'
]
=
16
transforms
[
'
scale
'
]
=
1.0
transforms
[
'
camera_angle_x
'
]
=
2
*
np
.
arctan
(
transforms
[
'
w
'
]
/
(
2
*
transforms
[
'
fl_x
'
]))
transforms
[
'
camera_angle_y
'
]
=
2
*
np
.
arctan
(
transforms
[
'
h
'
]
/
(
2
*
transforms
[
'
fl_y
'
]))
transforms
[
'
frames
'
]
=
frames
os
.
makedirs
(
dataset_dir
/
'
arkit_transforms
'
,
exist_ok
=
True
)
with
open
(
dataset_dir
/
'
arkit_transforms
'
/
'
transforms.json
'
,
'
w
'
)
as
fp
:
json
.
dump
(
transforms
,
fp
,
indent
=
2
)
# Normalize the poses.
transforms
[
'
frames
'
]
=
transforms
[
'
frames
'
][::
args
.
subsample
]
translation
,
scale
=
find_transforms_center_and_scale
(
transforms
)
normalized_transforms
=
normalize_transforms
(
transforms
,
translation
,
scale
)
output_path
=
dataset_dir
/
'
transforms.json
'
with
open
(
output_path
,
"
w
"
)
as
outfile
:
json
.
dump
(
normalized_transforms
,
outfile
,
indent
=
2
)
\ No newline at end of file
args
=
parse_args
()
dataset_dir
=
Path
(
args
.
scene
)
with
open
(
dataset_dir
/
'
metadata
'
)
as
f
:
metadata
=
json
.
load
(
f
)
frames
=
[]
n_images
=
len
(
list
((
dataset_dir
/
'
rgbd
'
).
glob
(
'
*.jpg
'
)))
poses
=
np
.
array
(
metadata
[
'
poses
'
])
for
idx
in
tqdm
(
range
(
n_images
)):
# Link the image.
img_name
=
f
'
{
idx
}
.jpg
'
img_path
=
dataset_dir
/
'
rgbd
'
/
img_name
# Rotate the image.
if
args
.
rotate
:
# TODO: parallelize this step with joblib.
rotate_img
(
img_path
)
# Extract c2w.
"""
Each `pose` is a 7-element tuple which contains quaternion + world position.
[qx, qy, qz, qw, tx, ty, tz]
"""
pose
=
poses
[
idx
]
q
=
Quaternion
(
x
=
pose
[
0
],
y
=
pose
[
1
],
z
=
pose
[
2
],
w
=
pose
[
3
])
c2w
=
np
.
eye
(
4
)
c2w
[:
3
,
:
3
]
=
q
.
rotation_matrix
c2w
[:
3
,
-
1
]
=
[
pose
[
4
],
pose
[
5
],
pose
[
6
]]
if
args
.
rotate
:
c2w
=
rotate_camera
(
c2w
)
c2w
=
swap_axes
(
c2w
)
frames
.
append
(
{
"
file_path
"
:
f
"
./rgbd/
{
img_name
}
"
,
"
transform_matrix
"
:
c2w
.
tolist
(),
}
)
# Write intrinsics to `cameras.txt`.
if
not
args
.
rotate
:
h
=
metadata
[
'
h
'
]
w
=
metadata
[
'
w
'
]
K
=
np
.
array
(
metadata
[
'
K
'
]).
reshape
([
3
,
3
]).
T
fx
=
K
[
0
,
0
]
fy
=
K
[
1
,
1
]
cx
=
K
[
0
,
2
]
cy
=
K
[
1
,
2
]
else
:
h
=
metadata
[
'
w
'
]
w
=
metadata
[
'
h
'
]
K
=
np
.
array
(
metadata
[
'
K
'
]).
reshape
([
3
,
3
]).
T
fx
=
K
[
1
,
1
]
fy
=
K
[
0
,
0
]
cx
=
K
[
1
,
2
]
cy
=
h
-
K
[
0
,
2
]
transforms
=
{}
transforms
[
'
fl_x
'
]
=
fx
transforms
[
'
fl_y
'
]
=
fy
transforms
[
'
cx
'
]
=
cx
transforms
[
'
cy
'
]
=
cy
transforms
[
'
w
'
]
=
w
transforms
[
'
h
'
]
=
h
transforms
[
'
aabb_scale
'
]
=
16
transforms
[
'
scale
'
]
=
1.0
transforms
[
'
camera_angle_x
'
]
=
2
*
np
.
arctan
(
transforms
[
'
w
'
]
/
(
2
*
transforms
[
'
fl_x
'
]))
transforms
[
'
camera_angle_y
'
]
=
2
*
np
.
arctan
(
transforms
[
'
h
'
]
/
(
2
*
transforms
[
'
fl_y
'
]))
transforms
[
'
frames
'
]
=
frames
os
.
makedirs
(
dataset_dir
/
'
arkit_transforms
'
,
exist_ok
=
True
)
with
open
(
dataset_dir
/
'
arkit_transforms
'
/
'
transforms.json
'
,
'
w
'
)
as
fp
:
json
.
dump
(
transforms
,
fp
,
indent
=
2
)
# Normalize the poses.
transforms
[
'
frames
'
]
=
transforms
[
'
frames
'
][::
args
.
subsample
]
translation
,
scale
=
find_transforms_center_and_scale
(
transforms
)
normalized_transforms
=
normalize_transforms
(
transforms
,
translation
,
scale
)
output_path
=
dataset_dir
/
'
transforms.json
'
with
open
(
output_path
,
"
w
"
)
as
outfile
:
json
.
dump
(
normalized_transforms
,
outfile
,
indent
=
2
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment