Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Segment-Object-Centric
Manage
Activity
Members
Labels
Plan
Issues
3
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Alexandre Chapin
Segment-Object-Centric
Commits
48bdf252
Commit
48bdf252
authored
2 years ago
by
Alexandre Chapin
Browse files
Options
Downloads
Patches
Plain Diff
Static slot
parent
52d11e07
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
osrt/data/extract_embeddings.py
+12
-18
12 additions, 18 deletions
osrt/data/extract_embeddings.py
osrt/encoder.py
+4
-4
4 additions, 4 deletions
osrt/encoder.py
osrt/layers.py
+1
-1
1 addition, 1 deletion
osrt/layers.py
with
17 additions
and
23 deletions
osrt/data/extract_embeddings.py
+
12
−
18
View file @
48bdf252
...
...
@@ -7,19 +7,19 @@ https://github.com/bowang-lab/MedSAM/blob/main/utils/precompute_img_embed.py
import
numpy
as
np
import
os
join
=
os
.
path
.
join
from
skimage
import
io
,
segmentation
from
tqdm
import
tqdm
import
torch
from
segment_anything
import
sam_model_registry
from
segment_anything.utils.transforms
import
ResizeLongestSide
import
argparse
import
cv2
parser
=
argparse
.
ArgumentParser
(
description
=
'
Extract image embeddings from SAM model
'
)
parser
.
add_argument
(
'
-i
'
,
'
--img_path
'
,
type
=
str
,
default
=
''
,
help
=
'
Path to the folder containing images
'
)
parser
.
add_argument
(
'
-o
'
,
'
--save_path
'
,
type
=
str
,
default
=
''
,
help
=
'
Path to the f
ile
containing the embeddings
'
)
parser
.
add_argument
(
'
-o
'
,
'
--save_path
'
,
type
=
str
,
default
=
''
,
help
=
'
Path to the f
older
containing the
final
embeddings
'
)
parser
.
add_argument
(
'
--model_type
'
,
type
=
str
,
default
=
'
vit_h
'
,
help
=
'
model type
'
)
parser
.
add_argument
(
'
--path_model
'
,
type
=
str
,
default
=
'
.
'
,
help
=
'
path to the pre-trained SAM model
'
)
args
=
parser
.
parse_args
()
...
...
@@ -34,22 +34,22 @@ else:
model_type
=
'
vit_l
'
checkpoint
=
args
.
path_model
+
'
/sam_vit_l_0b3195.pth
'
pre_img_path
=
args
.
img_path
save_img_emb_path
=
join
(
args
.
save_path
,
'
npy_embs
'
)
save_gt_path
=
join
(
args
.
save_path
,
'
npy_gts
'
)
os
.
makedirs
(
save_img_emb_path
,
exist_ok
=
True
)
os
.
makedirs
(
save_gt_path
,
exist_ok
=
True
)
npz_files
=
sorted
(
os
.
listdir
(
pre_img_path
))
img_path
=
args
.
img_path
img_files
=
sorted
(
os
.
listdir
(
img_path
))
sam_model
=
sam_model_registry
[
args
.
model_type
](
checkpoint
=
args
.
checkpoint
).
to
(
'
cuda:0
'
)
sam_transform
=
ResizeLongestSide
(
sam_model
.
image_encoder
.
img_size
)
# compute image embeddings
for
name
in
tqdm
(
npz_files
):
img
=
np
.
load
(
join
(
pre_img_path
,
name
))[
'
img
'
]
# (256, 256, 3)
gt
=
np
.
load
(
join
(
pre_img_path
,
name
))[
'
gt
'
]
images
=
[]
for
name
in
tqdm
(
img_files
):
img
=
cv2
.
imread
(
name
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
img_np
=
np
.
array
(
img
)
resize_img
=
sam_transform
.
apply_image
(
img
)
resize_img_tensor
=
torch
.
as_tensor
(
resize_img
.
transpose
(
2
,
0
,
1
)).
to
(
'
cuda:0
'
)
# model input: (1, 3, 1024, 1024)
input_image
=
sam_model
.
preprocess
(
resize_img_tensor
[
None
,:,:,:])
# (1, 3, 1024, 1024)
assert
input_image
.
shape
==
(
1
,
3
,
sam_model
.
image_encoder
.
img_size
,
sam_model
.
image_encoder
.
img_size
),
'
input image should be resized to 1024*1024
'
...
...
@@ -57,10 +57,4 @@ for name in tqdm(npz_files):
embedding
=
sam_model
.
image_encoder
(
input_image
)
# save as npy
np
.
save
(
join
(
save_img_emb_path
,
name
.
split
(
'
.npz
'
)[
0
]
+
'
.npy
'
),
embedding
.
cpu
().
numpy
()[
0
])
np
.
save
(
join
(
save_gt_path
,
name
.
split
(
'
.npz
'
)[
0
]
+
'
.npy
'
),
gt
)
# sanity check
img_idx
=
img
.
copy
()
bd
=
segmentation
.
find_boundaries
(
gt
,
mode
=
'
inner
'
)
img_idx
[
bd
,
:]
=
[
255
,
0
,
0
]
io
.
imsave
(
save_img_emb_path
+
'
.png
'
,
img_idx
)
\ No newline at end of file
np
.
save
(
join
(
args
.
save_path
,
name
.
split
(
'
.
'
)[
0
]
+
'
.npy
'
),
embedding
.
cpu
().
numpy
()[
0
])
\ No newline at end of file
This diff is collapsed.
Click to expand it.
osrt/encoder.py
+
4
−
4
View file @
48bdf252
...
...
@@ -120,7 +120,7 @@ class FeatureMasking(nn.Module):
pred_iou_thresh
=
0.88
,
points_per_batch
=
64
,
min_mask_region_area
=
0
,
num_slots
=
6
,
num_slots
=
10
,
slot_dim
=
1536
,
slot_iters
=
1
,
sam_model
=
"
default
"
,
...
...
@@ -193,14 +193,14 @@ class FeatureMasking(nn.Module):
set_latents
=
None
# TODO : set the number of slots according to either we want min or max
with
torch
.
no_grad
():
num_slots
=
100000
#
num_slots = 100000
embedding_batch
=
[]
masks_batch
=
[]
for
b
in
range
(
B
):
latents_batch
=
torch
.
empty
((
0
,
dim
),
device
=
self
.
mask_generator
.
device
)
for
n
in
range
(
N
):
embeds
=
masks
[
b
][
n
][
"
embeddings
"
]
num_slots
=
min
(
len
(
embeds
),
num_slots
)
#
num_slots = min(len(embeds), num_slots)
for
embed
in
embeds
:
latents_batch
=
torch
.
cat
((
latents_batch
,
embed
.
unsqueeze
(
0
)),
0
)
masks_batch
.
append
(
torch
.
zeros
(
latents_batch
.
shape
[:
1
]))
...
...
@@ -209,7 +209,7 @@ class FeatureMasking(nn.Module):
attention_mask
=
pad_sequence
(
masks_batch
,
batch_first
=
True
,
padding_value
=
1.0
)
# [batch_size, num_inputs = num_mask_embed x num_im, dim]
self
.
slot_attention
.
change_slots_number
(
num_slots
)
#
self.slot_attention.change_slots_number(num_slots)
slot_latents
=
self
.
slot_attention
(
set_latents
,
attention_mask
)
if
extract_masks
:
...
...
This diff is collapsed.
Click to expand it.
osrt/layers.py
+
1
−
1
View file @
48bdf252
...
...
@@ -251,7 +251,7 @@ class SlotAttention(nn.Module):
attn
=
dots
.
softmax
(
dim
=
1
)
+
self
.
eps
attn
=
attn
/
attn
.
sum
(
dim
=-
1
,
keepdim
=
True
)
updates
=
torch
.
einsum
(
'
bjd,bij->bid
'
,
v
,
attn
)
# shape: [batch_size, num_inputs, slot_dim]
slots
=
self
.
gru
(
updates
.
flatten
(
0
,
1
),
slots_prev
.
flatten
(
0
,
1
))
slots
=
slots
.
reshape
(
batch_size
,
self
.
num_slots
,
self
.
slot_dim
)
slots
=
slots
+
self
.
mlp
(
self
.
norm_pre_mlp
(
slots
))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment