Skip to content
Snippets Groups Projects
Commit 046482d4 authored by Guillaume Duret's avatar Guillaume Duret
Browse files

script for eval

parent 58f026d2
No related branches found
Tags v1.0.0
No related merge requests found
from ultralytics import YOLO
import cv2
import matplotlib.pyplot as plt
import argparse
import os
# Create the parser
parser = argparse.ArgumentParser()
# Add an argument
parser.add_argument('--path_evaluation', type=str, required=True)
parser.add_argument('--path_result', type=str, required=True)
parser.add_argument('--class_object', type=str, required=True)
parser.add_argument('--path_model_yolo', type=str, required=True)
# Parse the argument
args = parser.parse_args()
# load the model.
model = YOLO(f"{args.path_model_yolo}")
#
path_evaluation_data = args.path_evaluation + "/" + args.class_object + "/RGB_resized"
for files in os.listdir(path_evaluation_data):
#print("files : ", files)
#print(f"{path_evaluation_data}/{files}")
try:
results = model.predict(source=f"{path_evaluation_data}/{files}", conf=0.5,
save=True)
#print(results)
results1 = results[0].to('cpu')
results11 = results1.numpy()
# boxes = results11.boxes # Boxes object for bbox outputs
# probs = results11.probs # Class probabilities for classification outputs
#
masks = results11.masks # Masks object for segmentation masks outputs
#print(masks)
mask_res = masks.data[0]
plt.imsave(f"{args.path_result}/{files}", mask_res, cmap='gray')
print("images saved : ", files )
except :
print("no prediction")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment