Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
FruitBin
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Duret
FruitBin
Commits
50fd07f6
Commit
50fd07f6
authored
2 years ago
by
Guillaume Duret
Browse files
Options
Downloads
Patches
Plain Diff
reading statistics to build chart
parent
91527d70
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
read_count.py
+101
-29
101 additions, 29 deletions
read_count.py
with
101 additions
and
29 deletions
read_count.py
+
101
−
29
View file @
50fd07f6
...
...
@@ -89,8 +89,7 @@ if __name__ == '__main__':
dataset_type
=
data_options
[
choice
]
dataset_name
=
f
"
/gpfsscratch/rech/uli/ubn15wo/dataset/s2rg/Fruits_all_medium/GUIMOD_
{
choice
}
"
list_categories
=
[
"
apple2
"
,
"
apricot
"
,
"
banana1
"
,
"
kiwi1
"
,
"
lemon2
"
,
"
orange2
"
,
"
peach1
"
,
"
pear2
"
]
#list_Nb_instance = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
path_json
=
"
Count_150000.json
"
...
...
@@ -119,15 +118,6 @@ if __name__ == '__main__':
mix_eval
=
[]
mix_test
=
[]
array_apple
=
[]
array_apricot
=
[]
array_banana
=
[]
array_kiwi
=
[]
array_lemon
=
[]
array_orange
=
[]
array_peach
=
[]
array_pear
=
[]
stat_cat_inst
=
{}
for
scenario_loop
in
scenarios
:
...
...
@@ -135,12 +125,10 @@ if __name__ == '__main__':
for
cat
in
list_categories
:
stat_cat_inst
[
scenario_loop
][
cat
]
=
{}
for
cat
in
list_categories
:
stat_cat
[
cat
]
=
{}
for
scenario_loop
in
scenarios
:
stat_cat
[
cat
][
scenario_loop
]
=
{}
for
destination_folder_loop
in
destination_folders_list
[
scenario_loop
]
:
# [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
#print("scenario_loop : " , scenario_loop)
#print("destination_folder_loop : " , destination_folder_loop)
...
...
@@ -200,24 +188,107 @@ if __name__ == '__main__':
print
(
mix_eval
)
print
(
mix_test
)
list_Nb_instance
=
[
"
0_instances
"
,
"
1_instances
"
,
"
2_instances
"
,
"
3_instances
"
,
"
4_instances
"
,
"
5_instances
"
,
"
6_instances
"
,
"
7_instances
"
,
"
8_instances
"
,
"
9_instances
"
,
"
10_instances
"
,
"
11_instances
"
,
"
12_instances
"
,
"
13_instances
"
,
"
14_instances
"
,
"
15_instances
"
,
"
16_instances
"
,
"
17_instances
"
,
"
18_instances
"
]
array_apple
=
[]
array_apricot
=
[]
array_banana
=
[]
array_kiwi
=
[]
array_lemon
=
[]
array_orange
=
[]
array_peach
=
[]
array_pear
=
[]
# for scenario_loop in scenarios :
# for cat in list_categories :
# for destination_folder_loop in destination_folders_list[scenario_loop] :
# stat_cat_inst[scenario_loop][cat][nb_inst]
df1_train
=
pd
.
DataFrame
(
np
.
resize
(
np
.
concatenate
((
np
.
array
(
worlds_train
),
np
.
array
(
cameras_train
),
np
.
array
(
mix_train
))
),
(
3
,
8
)),
index
=
[
"
World
"
,
"
Cameras
"
,
"
All
"
],
columns
=
[
"
apple
"
,
"
apricot
"
,
"
banana
"
,
"
kiwi
"
,
"
lemon
"
,
"
orange
"
,
"
peach
"
,
"
pear
"
])
df2_eval
=
pd
.
DataFrame
(
np
.
resize
(
np
.
concatenate
((
np
.
array
(
worlds_eval
),
np
.
array
(
cameras_eval
),
np
.
array
(
mix_eval
))
),
(
3
,
8
)),
index
=
[
"
World
"
,
"
Cameras
"
,
"
All
"
],
columns
=
[
"
apple
"
,
"
apricot
"
,
"
banana
"
,
"
kiwi
"
,
"
lemon
"
,
"
orange
"
,
"
peach
"
,
"
pear
"
])
df3_test
=
pd
.
DataFrame
(
np
.
resize
(
np
.
concatenate
((
np
.
array
(
worlds_test
),
np
.
array
(
cameras_test
),
np
.
array
(
mix_test
))
),
(
3
,
8
)),
index
=
[
"
World
"
,
"
Cameras
"
,
"
All
"
],
columns
=
[
"
apple
"
,
"
apricot
"
,
"
banana
"
,
"
kiwi
"
,
"
lemon
"
,
"
orange
"
,
"
peach
"
,
"
pear
"
])
list_categories
=
[
"
apple2
"
,
"
apricot
"
,
"
banana1
"
,
"
kiwi1
"
,
"
lemon2
"
,
"
orange2
"
,
"
peach1
"
,
"
pear2
"
]
df1
=
prep_df
(
df1_train
,
'
Train
'
)
df2
=
prep_df
(
df2_eval
,
'
Eval
'
)
df3
=
prep_df
(
df3_test
,
'
Test
'
)
for
cat
in
list_categories
:
for
nb_inst
in
list_Nb_instance
:
print
(
stat_cat_inst
[
scenario_loop
][
cat
].
keys
())
if
nb_inst
in
stat_cat_inst
[
scenario_loop
][
cat
].
keys
()
:
#because some rare occurance of large instance number
if
cat
==
"
apple2
"
:
array_apple
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
if
cat
==
"
apricot
"
:
array_apricot
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
if
cat
==
"
banana1
"
:
array_banana
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
if
cat
==
"
kiwi1
"
:
array_kiwi
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
if
cat
==
"
lemon2
"
:
array_lemon
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
if
cat
==
"
orange2
"
:
array_orange
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
if
cat
==
"
peach1
"
:
array_peach
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
if
cat
==
"
pear2
"
:
array_pear
.
append
(
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
])
else
:
#because some rare occurance of large instance number
print
(
nb_inst
)
if
cat
==
"
apple2
"
:
array_apple
.
append
(
0
)
if
cat
==
"
apricot
"
:
array_apricot
.
append
(
0
)
if
cat
==
"
banana1
"
:
array_banana
.
append
(
0
)
if
cat
==
"
kiwi1
"
:
array_kiwi
.
append
(
0
)
if
cat
==
"
lemon2
"
:
array_lemon
.
append
(
0
)
if
cat
==
"
orange2
"
:
array_orange
.
append
(
0
)
if
cat
==
"
peach1
"
:
array_peach
.
append
(
0
)
if
cat
==
"
pear2
"
:
array_pear
.
append
(
0
)
print
()
print
(
array_apple
)
print
(
array_apricot
)
print
(
array_banana
)
print
(
array_kiwi
)
print
(
array_lemon
)
print
(
array_orange
)
print
(
array_peach
)
print
(
array_pear
)
print
(
len
(
array_pear
))
print
(
np
.
resize
(
array_apple
,
(
3
,
19
)))
df_apple
=
pd
.
DataFrame
(
np
.
resize
(
array_apple
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_apricot
=
pd
.
DataFrame
(
np
.
resize
(
array_apricot
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_banana
=
pd
.
DataFrame
(
np
.
resize
(
array_banana
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_kiwi
=
pd
.
DataFrame
(
np
.
resize
(
array_kiwi
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_lemon
=
pd
.
DataFrame
(
np
.
resize
(
array_lemon
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_orange
=
pd
.
DataFrame
(
np
.
resize
(
array_orange
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_peach
=
pd
.
DataFrame
(
np
.
resize
(
array_peach
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_pear
=
pd
.
DataFrame
(
np
.
resize
(
array_pear
,
(
1
,
19
)),
index
=
[
"
Dataset
"
],
columns
=
list_Nb_instance
)
df_apple1
=
prep_df
(
df_apple
,
'
Apple
'
)
df_apricot1
=
prep_df
(
df_apricot
,
'
Apricot
'
)
df_banana1
=
prep_df
(
df_banana
,
'
Banana
'
)
df_kiwi1
=
prep_df
(
df_kiwi
,
'
Kiwi
'
)
df_lemon1
=
prep_df
(
df_lemon
,
'
Lemon
'
)
df_orange1
=
prep_df
(
df_orange
,
'
Orange
'
)
df_peach1
=
prep_df
(
df_peach
,
'
Peach
'
)
df_pear1
=
prep_df
(
df_pear
,
'
Pear
'
)
df
=
pd
.
concat
([
df_apple1
,
df_apricot1
,
df_banana1
,
df_kiwi1
,
df_lemon1
,
df_orange1
,
df_peach1
,
df_pear1
])
# qxqxs
# df1_train=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
# df2_eval=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_eval), np.array(cameras_eval), np.array(mix_eval)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
# df3_test=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_test), np.array(cameras_test), np.array(mix_test)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
# df1 = prep_df(df1_train, 'Train')
# df2 = prep_df(df2_eval, 'Eval')
# df3 = prep_df(df3_test, 'Test')
df
=
pd
.
concat
([
df1
,
df2
,
df3
])
#
df = pd.concat([df1, df2, df3])
# print(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)))
...
...
@@ -242,9 +313,10 @@ if __name__ == '__main__':
alt
.
renderers
.
enable
(
'
altair_viewer
'
)
chart
=
alt
.
Chart
(
df
).
mark_bar
().
encode
(
# tell Altair which field to group columns on
x
=
alt
.
X
(
'
c2:N
'
,
title
=
None
),
x
=
alt
.
X
(
'
c2:N
'
,
title
=
None
,
sort
=
None
),
# tell Altair which field to use as Y values and how to calculate
y
=
alt
.
Y
(
'
sum(values):Q
'
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment