Skip to content
Snippets Groups Projects
Commit 50fd07f6 authored by Guillaume Duret's avatar Guillaume Duret
Browse files

reading statistics to build chart

parent 91527d70
No related branches found
No related tags found
No related merge requests found
......@@ -89,8 +89,7 @@ if __name__ == '__main__':
dataset_type = data_options[choice]
dataset_name = f"/gpfsscratch/rech/uli/ubn15wo/dataset/s2rg/Fruits_all_medium/GUIMOD_{choice}"
list_categories = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
#list_Nb_instance = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
path_json = "Count_150000.json"
......@@ -119,15 +118,6 @@ if __name__ == '__main__':
mix_eval=[]
mix_test=[]
array_apple=[]
array_apricot=[]
array_banana=[]
array_kiwi=[]
array_lemon=[]
array_orange=[]
array_peach=[]
array_pear=[]
stat_cat_inst = {}
for scenario_loop in scenarios :
......@@ -135,12 +125,10 @@ if __name__ == '__main__':
for cat in list_categories :
stat_cat_inst[scenario_loop][cat] = {}
for cat in list_categories :
stat_cat[cat] = {}
for scenario_loop in scenarios :
stat_cat[cat][scenario_loop] = {}
for destination_folder_loop in destination_folders_list[scenario_loop] : # [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
#print("scenario_loop : " , scenario_loop)
#print("destination_folder_loop : " , destination_folder_loop)
......@@ -200,24 +188,107 @@ if __name__ == '__main__':
print(mix_eval)
print(mix_test)
list_Nb_instance = [ "0_instances" , "1_instances", "2_instances", "3_instances", "4_instances", "5_instances" ,
"6_instances", "7_instances" , "8_instances", "9_instances","10_instances","11_instances",
"12_instances", "13_instances" , "14_instances", "15_instances","16_instances","17_instances", "18_instances"]
array_apple=[]
array_apricot=[]
array_banana=[]
array_kiwi=[]
array_lemon=[]
array_orange=[]
array_peach=[]
array_pear=[]
# for scenario_loop in scenarios :
# for cat in list_categories :
# for destination_folder_loop in destination_folders_list[scenario_loop] :
# stat_cat_inst[scenario_loop][cat][nb_inst]
df1_train=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
df2_eval=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_eval), np.array(cameras_eval), np.array(mix_eval)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
df3_test=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_test), np.array(cameras_test), np.array(mix_test)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
list_categories = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
df1 = prep_df(df1_train, 'Train')
df2 = prep_df(df2_eval, 'Eval')
df3 = prep_df(df3_test, 'Test')
for cat in list_categories :
for nb_inst in list_Nb_instance :
print(stat_cat_inst[scenario_loop][cat].keys())
if nb_inst in stat_cat_inst[scenario_loop][cat].keys() : #because some rare occurance of large instance number
if cat == "apple2" :
array_apple.append(stat_cat_inst[scenario_loop][cat][nb_inst])
if cat == "apricot" :
array_apricot.append(stat_cat_inst[scenario_loop][cat][nb_inst])
if cat == "banana1" :
array_banana.append(stat_cat_inst[scenario_loop][cat][nb_inst])
if cat == "kiwi1" :
array_kiwi.append(stat_cat_inst[scenario_loop][cat][nb_inst])
if cat == "lemon2" :
array_lemon.append(stat_cat_inst[scenario_loop][cat][nb_inst])
if cat == "orange2" :
array_orange.append(stat_cat_inst[scenario_loop][cat][nb_inst])
if cat == "peach1" :
array_peach.append(stat_cat_inst[scenario_loop][cat][nb_inst])
if cat == "pear2" :
array_pear.append(stat_cat_inst[scenario_loop][cat][nb_inst])
else : #because some rare occurance of large instance number
print(nb_inst)
if cat == "apple2" :
array_apple.append(0)
if cat == "apricot" :
array_apricot.append(0)
if cat == "banana1" :
array_banana.append(0)
if cat == "kiwi1" :
array_kiwi.append(0)
if cat == "lemon2" :
array_lemon.append(0)
if cat == "orange2" :
array_orange.append(0)
if cat == "peach1" :
array_peach.append(0)
if cat == "pear2" :
array_pear.append(0)
print()
print(array_apple)
print(array_apricot)
print(array_banana)
print(array_kiwi)
print(array_lemon)
print(array_orange)
print(array_peach)
print(array_pear)
print(len(array_pear))
print(np.resize( array_apple , (3, 19)))
df_apple=pd.DataFrame(np.resize( array_apple , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_apricot=pd.DataFrame(np.resize( array_apricot , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_banana=pd.DataFrame(np.resize( array_banana , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_kiwi=pd.DataFrame(np.resize( array_kiwi , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_lemon=pd.DataFrame(np.resize( array_lemon , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_orange=pd.DataFrame(np.resize( array_orange , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_peach=pd.DataFrame(np.resize( array_peach , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_pear=pd.DataFrame(np.resize( array_pear , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
df_apple1 = prep_df(df_apple, 'Apple')
df_apricot1 = prep_df(df_apricot, 'Apricot')
df_banana1 = prep_df(df_banana, 'Banana')
df_kiwi1 = prep_df(df_kiwi, 'Kiwi')
df_lemon1 = prep_df(df_lemon, 'Lemon')
df_orange1 = prep_df(df_orange, 'Orange')
df_peach1 = prep_df(df_peach, 'Peach')
df_pear1 = prep_df(df_pear, 'Pear')
df = pd.concat([df_apple1, df_apricot1, df_banana1, df_kiwi1, df_lemon1, df_orange1, df_peach1, df_pear1])
# qxqxs
# df1_train=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
# df2_eval=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_eval), np.array(cameras_eval), np.array(mix_eval)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
# df3_test=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_test), np.array(cameras_test), np.array(mix_test)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
# df1 = prep_df(df1_train, 'Train')
# df2 = prep_df(df2_eval, 'Eval')
# df3 = prep_df(df3_test, 'Test')
df = pd.concat([df1, df2, df3])
# df = pd.concat([df1, df2, df3])
# print(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)))
......@@ -242,9 +313,10 @@ if __name__ == '__main__':
alt.renderers.enable('altair_viewer')
chart = alt.Chart(df).mark_bar().encode(
# tell Altair which field to group columns on
x=alt.X('c2:N', title=None),
x=alt.X('c2:N', title=None, sort=None),
# tell Altair which field to use as Y values and how to calculate
y=alt.Y('sum(values):Q',
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment