Newer
Older
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
classifiers = [
('bayes', MultinomialNB()),
#('decisionTree',DecisionTreeClassifier()),
#param_grid_decisionTree = { 'criterion' : ['gini', 'entropy'], 'max_depth':range(5,10), 'min_samples_split': range(5,10), 'min_samples_leaf': range(1,5) }
param_grid_rfc = { 'max_features': ['sqrt', 'log2'], 'max_depth' : [4,5,6,7,8]}
param_grid_lr = {"C":np.logspace(-3,3,7)}
param_grid_sgd = { "loss" : ["log", "modified_huber"]}
#param_grid_knn = {'n_neighbors' : list(range(3,20)), 'weights' : ['uniform', 'distance'], 'metric' : ['euclidean', 'manhattan'] }
('lr', param_grid_lr),
('sgd', param_grid_sgd ),