Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
EDdA Classification
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Projet GEODE
EDdA Classification
Commits
631df416
Commit
631df416
authored
3 years ago
by
Khalleud
Browse files
Options
Downloads
Patches
Plain Diff
[FIX] update feature extractor with split
parent
875518be
No related branches found
Branches containing commit
No related tags found
1 merge request
!4
Branch dev vectorization feature
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
classifiers.py
+4
-3
4 additions, 3 deletions
classifiers.py
experimentsClassicClassifiers.py
+17
-10
17 additions, 10 deletions
experimentsClassicClassifiers.py
features_extractor.py
+27
-20
27 additions, 20 deletions
features_extractor.py
with
48 additions
and
33 deletions
classifiers.py
+
4
−
3
View file @
631df416
...
...
@@ -30,10 +30,11 @@ param_grid_knn = {'n_neighbors' : list(range(3,20)), 'weights' : ['uniform', 'di
grid_params
=
[
(
'
bayes
'
,
None
),
(
'
lr
'
,
param_grid_lr
),
(
'
sgd
'
,
param_grid_sgd
),
(
'
svm
'
,
param_grid_svm
),
(
'
decisionTree
'
,
param_grid_decisionTree
),
(
'
rfc
'
,
param_grid_rfc
),
(
'
lr
'
,
param_grid_lr
),
(
'
sgd
'
,
param_grid_sgd
),
(
'
knn
'
,
param_grid_knn
),
(
'
knn
'
,
param_grid_knn
),
]
This diff is collapsed.
Click to expand it.
experimentsClassicClassifiers.py
+
17
−
10
View file @
631df416
...
...
@@ -72,35 +72,42 @@ for columnInput in [columnText, 'firstParagraph']:
print
(
'
Process:
'
+
columnInput
)
extractor
=
feature_extractor
(
df
,
columnInput
,
columnClass
)
#prepare data
df
=
df
[
df
[
columnClass
]
!=
'
unclassified
'
]
y
=
df
[
columnClass
]
train_x
,
test_x
,
train_y
,
test_y
=
train_test_split
(
features
,
y
,
test_size
=
0.33
,
random_state
=
42
,
stratify
=
y
)
encoder
=
preprocessing
.
LabelEncoder
()
train_y
=
encoder
.
fit_transform
(
train_y
)
valid_y
=
encoder
.
fit_transform
(
test_y
)
extractor
=
feature_extractor
(
train_x
,
test_x
,
columnInput
,
columnClass
)
features_techniques
=
[
(
'
counter
'
,
extractor
.
count_vect
(
max_df
=
vectorization_max_df
,
min_df
=
vectorization_min_df
,
numberOfFeatures
=
vectorization_numberOfFeatures
)),
(
'
tf_idf
'
,
extractor
.
tf_idf
(
max_df
=
vectorization_max_df
,
min_df
=
vectorization_min_df
,
numberOfFeatures
=
vectorization_numberOfFeatures
)),
(
'
doc2vec
'
,
extractor
.
doc2vec
(
doc2vec_epochs
,
doc2vec_vec_size
,
doc2vec_lr
))]
#prepare data
df
=
df
[
df
[
columnClass
]
!=
'
unclassified
'
]
y
=
df
[
columnClass
]
#case of full text
for
feature_technique_name
,
features
in
features_techniques
:
train_x
,
test_x
,
train_y
,
test_y
=
train_test_split
(
features
,
y
,
test_size
=
0.33
,
random_state
=
42
,
stratify
=
y
)
encoder
=
preprocessing
.
LabelEncoder
()
train_y
=
encoder
.
fit_transform
(
train_y
)
valid_y
=
encoder
.
fit_transform
(
test_y
)
# features has the train_x and the test_x after vectorization
train_x
,
test_x
=
features
for
tmp_clf
,
tmp_grid_params
in
zip
(
classifiers
,
grid_params
):
clf_name
,
clf
=
tmp_clf
grid_param_name
,
grid_param
=
tmp_grid_params
print
(
clf_name
,
clf
,
grid_param_name
,
grid_param
)
model_file_name
=
columnInput
+
'
_
'
+
feature_technique_name
+
'
_
'
+
clf_name
+
str
(
minOfInstancePerClass
)
+
'
_
'
+
str
(
maxOfInstancePerClass
)
+
"
.pkl
"
if
clf_name
!=
'
bayes
'
:
clf
=
GridSearchCV
(
clf
,
grid_param
,
refit
=
True
,
verbose
=
3
)
elif
feature_technique_name
==
'
doc2vec
'
:
continue
t_begin
=
time
.
time
()
if
os
.
path
.
isfile
(
os
.
path
.
join
(
'
./models
'
,
model_file_name
)):
...
...
This diff is collapsed.
Click to expand it.
features_extractor.py
+
27
−
20
View file @
631df416
...
...
@@ -12,16 +12,17 @@ from nltk.tokenize import word_tokenize
class
feature_extractor
:
def
__init__
(
self
,
data
,
column
,
target
):
def
__init__
(
self
,
train_x
,
test_x
,
column
,
target
):
self
.
column
=
column
self
.
data
=
data
self
.
X
=
data
[
column
]
self
.
y
=
data
[
target
]
#
self.data = data
#
self.X = data[column]
#
self.y = data[target]
self
.
docs
=
[]
for
index
,
row
in
data
.
iterrows
():
self
.
docs
.
append
(
row
[
column
])
self
.
docs_train
=
train_x
[
column
].
tolist
()
self
.
docs_test
=
test_x
[
column
].
tolist
()
#for index, row in data.iterrows():
# self.docs.append(row[column])
def
count_vect
(
self
,
max_df
=
1.0
,
min_df
=
1
,
numberOfFeatures
=
None
):
...
...
@@ -36,9 +37,9 @@ class feature_extractor:
stem_vectorizer_fr
=
CountVectorizer
(
stop_words
=
'
french
'
,
analyzer
=
stemmed_words_fr
,
max_df
=
max_df
,
min_df
=
min_df
,
max_features
=
numberOfFeatures
)
stem_vectorizer_fr
.
fit
(
self
.
docs
)
stem_vectorizer_fr
.
fit
(
self
.
docs
_train
)
return
stem_vectorizer_fr
.
transform
(
self
.
docs
)
return
stem_vectorizer_fr
.
transform
(
self
.
docs
_train
),
stem_vectorizer_fr
.
transform
(
self
.
docs_test
)
def
tf_idf
(
self
,
max_df
=
1.0
,
min_df
=
1
,
numberOfFeatures
=
None
):
...
...
@@ -53,21 +54,26 @@ class feature_extractor:
return
(
stemmer_fr
.
stem
(
w
)
for
w
in
analyzer
(
doc
)
if
not
w
in
stop_words
)
tfidf_vectorizer
=
TfidfVectorizer
(
stop_words
=
'
french
'
,
analyzer
=
stemmed_words_fr
,
max_df
=
max_df
,
min_df
=
min_df
,
max_features
=
numberOfFeatures
)
tfidf_vectorizer
.
fit
(
self
.
docs
)
return
tfidf_vectorizer
.
transform
(
self
.
docs
)
tfidf_vectorizer
.
fit
(
self
.
docs
_train
)
return
tfidf_vectorizer
.
transform
(
self
.
docs
_train
),
tfidf_vectorizer
.
transform
(
self
.
docs_test
)
def
doc2vec
(
self
,
max_epochs
,
vec_size
,
alpha
=
0.025
,
dm
=
1
):
tagged_data
=
[
TaggedDocument
(
words
=
word_tokenize
(
_d
.
lower
()),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs
)]
#tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
tagged_tr
=
[
TaggedDocument
(
words
=
word_tokenize
(
_d
.
lower
()),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_train
)]
#Tag test set
tagged_test
=
[
TaggedDocument
(
words
=
word_tokenize
(
_d
.
lower
()),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_test
)]
model
=
Doc2Vec
(
vector_size
=
vec_size
,
alpha
=
alpha
,
min_alpha
=
0.00025
,
min_count
=
1
,
dm
=
1
)
model
.
build_vocab
(
tagged_
data
)
model
.
build_vocab
(
tagged_
tr
)
for
epoch
in
range
(
max_epochs
):
print
(
'
iteration {0}
'
.
format
(
epoch
))
model
.
train
(
tagged_
data
,
total_examples
=
model
.
corpus_count
,
epochs
=
model
.
iter
)
model
.
train
(
tagged_
tr
,
total_examples
=
model
.
corpus_count
,
epochs
=
model
.
iter
)
# decrease the learning rate
model
.
alpha
-=
0.0002
# fix the learning rate, no decay
...
...
@@ -78,12 +84,13 @@ class feature_extractor:
nb_docs_small
=
len
(
set_tags
)
doc_vec_doc2vec
=
np
.
zeros
(
shape
=
(
nb_docs_small
,
vec_size
))
i
=
0
for
t
in
set_tags
:
doc_vec_doc2vec
[
i
]
=
model
.
docvecs
[
t
]
i
+=
1
return
doc_vec_doc2vec
#i = 0
#for t in set_tags:
# doc_vec_doc2vec[i] = model.docvecs[t]
# i += 1
X_train
=
np
.
array
([
model
.
docvecs
[
str
(
i
)]
for
i
in
range
(
len
(
tagged_tr
))])
X_test
=
np
.
array
([
model
.
infer_vector
(
tagged_test
[
i
][
0
])
for
i
in
range
(
len
(
tagged_test
))])
return
X_train
,
X_test
def
text_based_features
(
self
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment