Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
EDdA Classification
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Projet GEODE
EDdA Classification
Commits
bc79aeb7
Commit
bc79aeb7
authored
3 years ago
by
Khalleud
Browse files
Options
Downloads
Patches
Plain Diff
Remove unused files
parent
a9ec82f7
No related branches found
No related tags found
1 merge request
!1
Branch v1
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
projet/main_1.py
+0
-71
0 additions, 71 deletions
projet/main_1.py
projet/main_2.py
+0
-73
0 additions, 73 deletions
projet/main_2.py
projet/main_3.py
+0
-85
0 additions, 85 deletions
projet/main_3.py
with
0 additions
and
229 deletions
projet/main_1.py
deleted
100644 → 0
+
0
−
71
View file @
a9ec82f7
import
pandas
as
pd
from
data_preprocessing
import
Preprocessor
from
features_extractor
import
feature_extractor
from
ClassPreprocessor
import
remove_weak_classes
,
resample_classes
,
create_dict
,
split_class
from
classifiers
import
classifiers
,
grid_params
from
sklearn.model_selection
import
train_test_split
from
sklearn
import
preprocessing
from
evaluate_model
import
evaluate_model
from
sklearn.naive_bayes
import
MultinomialNB
# Reading data
df
=
pd
.
read_csv
(
'
data/EDdA_dataframe_withContent.tsv
'
,
sep
=
"
\t
"
)
df_normClass_artfl
=
df
[[
'
normClass_artfl
'
,
'
content
'
]].
copy
()
#remove null values of class column and text column
preprocessor
=
Preprocessor
()
preprocessor
.
remove_null_rows
(
df_normClass_artfl
,
'
content
'
)
preprocessor
.
remove_null_rows
(
df_normClass_artfl
,
'
normClass_artfl
'
)
df_normClass_artfl
=
split_class
(
df_normClass_artfl
,
'
normClass_artfl
'
)
minOfInstancePerClass
=
200
maxOfInstancePerClass
=
1500
#remove weak classes and resample classes
df_normClass_artfl
=
remove_weak_classes
(
df_normClass_artfl
,
'
normClass_artfl
'
,
minOfInstancePerClass
)
df_normClass_artfl
=
resample_classes
(
df_normClass_artfl
,
'
normClass_artfl
'
,
maxOfInstancePerClass
)
preprocessor
.
saveDataFrametoCSV
(
df_normClass_artfl
,
'
df_normClass_artfl.csv
'
)
#features extraction step
#df_normClass_artfl = pd.read_csv('df_normClass_artfl.csv')
extractor
=
feature_extractor
(
df_normClass_artfl
,
'
content
'
,
'
normClass_artfl
'
)
X_count_vect
=
extractor
.
count_vect
()
X_tf
=
extractor
.
tf_idf
()
#X_doc2vec = extractor.doc2vec(10, 20, 0.025)
#X_text_feature = extractor.text_based_features()
# preparing the train and test data
df_normClass_artfl
=
df_normClass_artfl
[
df_normClass_artfl
[
'
normClass_artfl
'
]
!=
'
unclassified
'
]
y
=
df_normClass_artfl
[
'
normClass_artfl
'
]
train_x
,
test_x
,
train_y
,
test_y
=
train_test_split
(
X_count_vect
,
y
,
test_size
=
0.33
,
random_state
=
42
,
stratify
=
y
)
encoder
=
preprocessing
.
LabelEncoder
()
train_y
=
encoder
.
fit_transform
(
train_y
)
valid_y
=
encoder
.
fit_transform
(
test_y
)
# fit the model
m
=
MultinomialNB
()
m
.
fit
(
train_x
,
train_y
)
y_pred
=
m
.
predict
(
test_x
)
#evaluate model
report
,
accuracy
,
weighted_avg
=
evaluate_model
(
y_pred
,
valid_y
,
[
str
(
e
)
for
e
in
encoder
.
transform
(
encoder
.
classes_
)],
encoder
.
classes_
)
print
(
report
)
print
(
'
accuracy : {}
'
.
format
(
accuracy
))
print
(
'
weighted_Precision : {}
'
.
format
(
weighted_avg
[
'
precision
'
]))
print
(
'
weighted_Recall : {}
'
.
format
(
weighted_avg
[
'
recall
'
]))
print
(
'
weighted_F-score : {}
'
.
format
(
weighted_avg
[
'
f1-score
'
]))
print
(
'
weighted_Support : {}
'
.
format
(
weighted_avg
[
'
support
'
]))
This diff is collapsed.
Click to expand it.
projet/main_2.py
deleted
100644 → 0
+
0
−
73
View file @
a9ec82f7
import
pandas
as
pd
from
data_preprocessing
import
Preprocessor
from
features_extractor
import
feature_extractor
from
ClassPreprocessor
import
remove_weak_classes
,
resample_classes
,
create_dict
,
split_class
from
classifiers
import
classifiers
,
grid_params
from
sklearn.model_selection
import
train_test_split
from
sklearn
import
preprocessing
from
evaluate_model
import
evaluate_model
from
sklearn.naive_bayes
import
MultinomialNB
# Reading data
df
=
pd
.
read_csv
(
'
data/EDdA_dataframe_withContent.tsv
'
,
sep
=
"
\t
"
)
df_domaine_enccre
=
df
[[
'
_domaine_enccre
'
,
'
content
'
]].
copy
()
#remove null values of class column and text column
preprocessor
=
Preprocessor
()
preprocessor
.
remove_null_rows
(
df_domaine_enccre
,
'
content
'
)
preprocessor
.
remove_null_rows
(
df_domaine_enccre
,
'
_domaine_enccre
'
)
df_domaine_enccre
=
split_class
(
df_domaine_enccre
,
'
_domaine_enccre
'
)
minOfInstancePerClass
=
200
maxOfInstancePerClass
=
1500
#remove weak classes and resample classes
df_domaine_enccre
=
remove_weak_classes
(
df_domaine_enccre
,
'
_domaine_enccre
'
,
minOfInstancePerClass
)
df_domaine_enccre
=
resample_classes
(
df_domaine_enccre
,
'
_domaine_enccre
'
,
maxOfInstancePerClass
)
preprocessor
.
saveDataFrametoCSV
(
df_domaine_enccre
,
'
df_domaine_enccre.csv
'
)
#features extraction step
#df_domaine_enccre = pd.read_csv('df_domaine_enccre.csv')
extractor
=
feature_extractor
(
df_domaine_enccre
,
'
content
'
,
'
_domaine_enccre
'
)
X_count_vect
=
extractor
.
count_vect
()
X_tf
=
extractor
.
tf_idf
()
#X_doc2vec = extractor.doc2vec(10, 20, 0.025)
#X_text_feature = extractor.text_based_features()
# preparing the train and test data
df_domaine_enccre
=
df_domaine_enccre
[
df_domaine_enccre
[
'
domaine_enccre
'
]
!=
'
unclassified
'
]
y
=
df_domaine_enccre
[
'
domaine_enccre
'
]
train_x
,
test_x
,
train_y
,
test_y
=
train_test_split
(
X_count_vect
,
y
,
test_size
=
0.33
,
random_state
=
42
,
stratify
=
y
)
encoder
=
preprocessing
.
LabelEncoder
()
train_y
=
encoder
.
fit_transform
(
train_y
)
valid_y
=
encoder
.
fit_transform
(
test_y
)
# fit the model
m
=
MultinomialNB
()
m
.
fit
(
train_x
,
train_y
)
y_pred
=
m
.
predict
(
test_x
)
#evaluate model
report
,
accuracy
,
weighted_avg
=
evaluate_model
(
y_pred
,
valid_y
,
[
str
(
e
)
for
e
in
encoder
.
transform
(
encoder
.
classes_
)],
encoder
.
classes_
)
print
(
report
)
print
(
'
accuracy : {}
'
.
format
(
accuracy
))
print
(
'
weighted_Precision : {}
'
.
format
(
weighted_avg
[
'
precision
'
]))
print
(
'
weighted_Recall : {}
'
.
format
(
weighted_avg
[
'
recall
'
]))
print
(
'
weighted_F-score : {}
'
.
format
(
weighted_avg
[
'
f1-score
'
]))
print
(
'
weighted_Support : {}
'
.
format
(
weighted_avg
[
'
support
'
]))
This diff is collapsed.
Click to expand it.
projet/main_3.py
deleted
100644 → 0
+
0
−
85
View file @
a9ec82f7
import
pandas
as
pd
import
numpy
as
np
from
data_preprocessing
import
Preprocessor
from
features_extractor
import
feature_extractor
from
ClassPreprocessor
import
remove_weak_classes
,
resample_classes
,
create_dict
,
split_class
from
classifiers
import
classifiers
,
grid_params
from
sklearn.model_selection
import
train_test_split
from
sklearn
import
preprocessing
from
evaluate_model
import
evaluate_model
from
sklearn.linear_model
import
LogisticRegression
from
sklearn.model_selection
import
GridSearchCV
# Reading data
df
=
pd
.
read_csv
(
'
data/EDdA_dataframe_withContent.tsv
'
,
sep
=
"
\t
"
)
df_ensemble_domaine_enccre
=
df
[[
'
ensemble_domaine_enccre
'
,
'
content
'
]].
copy
()
#remove null values of class column and text column
preprocessor
=
Preprocessor
()
preprocessor
.
remove_null_rows
(
df_ensemble_domaine_enccre
,
'
content
'
)
preprocessor
.
remove_null_rows
(
df_ensemble_domaine_enccre
,
'
ensemble_domaine_enccre
'
)
#df_ensemble_domaine_enccre = split_class(df_ensemble_domaine_enccre, 'ensemble_domaine_enccre')
minOfInstancePerClass
=
200
maxOfInstancePerClass
=
1500
#remove weak classes and resample classes
print
(
create_dict
(
df_ensemble_domaine_enccre
,
'
ensemble_domaine_enccre
'
))
df_ensemble_domaine_enccre
=
remove_weak_classes
(
df_ensemble_domaine_enccre
,
'
ensemble_domaine_enccre
'
,
minOfInstancePerClass
)
df_ensemble_domaine_enccre
=
resample_classes
(
df_ensemble_domaine_enccre
,
'
ensemble_domaine_enccre
'
,
maxOfInstancePerClass
)
print
(
create_dict
(
df_ensemble_domaine_enccre
,
'
ensemble_domaine_enccre
'
))
#preprocessor.saveDataFrametoCSV(df_ensemble_domaine_enccre,'df_ensemble_domaine_enccre.csv')
#features extraction step
#df_ensemble_domaine_enccre = pd.read_csv('df_ensemble_domaine_enccre.csv')
extractor
=
feature_extractor
(
df_ensemble_domaine_enccre
,
'
content
'
,
'
ensemble_domaine_enccre
'
)
X_count_vect
=
extractor
.
count_vect
()
#X_tf = extractor.tf_idf()
#X_doc2vec = extractor.doc2vec(10, 20, 0.025)
#X_text_feature = extractor.text_based_features()
# preparing the train and test data
df_ensemble_domaine_enccre
=
df_ensemble_domaine_enccre
[
df_ensemble_domaine_enccre
[
'
ensemble_domaine_enccre
'
]
!=
'
unclassified
'
]
y
=
df_ensemble_domaine_enccre
[
'
ensemble_domaine_enccre
'
]
train_x
,
test_x
,
train_y
,
test_y
=
train_test_split
(
X_count_vect
,
y
,
test_size
=
0.33
,
random_state
=
42
,
stratify
=
y
)
encoder
=
preprocessing
.
LabelEncoder
()
train_y
=
encoder
.
fit_transform
(
train_y
)
valid_y
=
encoder
.
fit_transform
(
test_y
)
# fit the model
m
=
LogisticRegression
()
#MultinomialNB()
#m.fit(train_x, train_y)
param_grid_lr
=
{
"
C
"
:
np
.
logspace
(
-
3
,
3
,
7
)}
clf
=
GridSearchCV
(
m
,
param_grid
=
param_grid_lr
,
cv
=
5
,
verbose
=
True
,
n_jobs
=-
1
)
# Fit on data
best_clf
=
clf
.
fit
(
train_x
,
train_y
)
y_pred
=
clf
.
predict
(
test_x
)
#evaluate model
report
,
accuracy
,
weighted_avg
=
evaluate_model
(
y_pred
,
valid_y
,
[
str
(
e
)
for
e
in
encoder
.
transform
(
encoder
.
classes_
)],
encoder
.
classes_
)
print
(
report
)
print
(
'
accuracy : {}
'
.
format
(
accuracy
))
print
(
'
weighted_Precision : {}
'
.
format
(
weighted_avg
[
'
precision
'
]))
print
(
'
weighted_Recall : {}
'
.
format
(
weighted_avg
[
'
recall
'
]))
print
(
'
weighted_F-score : {}
'
.
format
(
weighted_avg
[
'
f1-score
'
]))
print
(
'
weighted_Support : {}
'
.
format
(
weighted_avg
[
'
support
'
]))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment