Skip to content
Snippets Groups Projects
Commit b7bfdcab authored by Schneider Leo's avatar Schneider Leo
Browse files

model cuda loading

parent eeb36bbb
No related branches found
No related tags found
No related merge requests found
......@@ -7,6 +7,7 @@ def load_args():
parser.add_argument('--epoches', type=int, default=100)
parser.add_argument('--save_inter', type=int, default=50)
parser.add_argument('--eval_inter', type=int, default=1)
parser.add_argument('--noise_threshold', type=int, default=0)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--dataset_dir', type=str, default='data/processed_data/png_image/data_training')
......
......@@ -26,25 +26,24 @@ class Random_shift_rt():
pass
def load_data(base_dir, batch_size, shuffle=True, transform=None):
if transform is None :
train_transform = transforms.Compose(
[transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Resize((224,224)),
Threshold_noise(500),
Log_normalisation(),
transforms.Normalize(0.5, 0.5)])
print('Default train transform')
def load_data(base_dir, batch_size, shuffle=True, noise_threshold=0):
train_transform = transforms.Compose(
[transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Resize((224,224)),
Threshold_noise(noise_threshold),
Log_normalisation(),
transforms.Normalize(0.5, 0.5)])
print('Default train transform')
val_transform = transforms.Compose(
[transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Resize((224,224)),
Threshold_noise(500),
Log_normalisation(),
transforms.Normalize(0.5, 0.5)])
print('Default val transform')
val_transform = transforms.Compose(
[transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Resize((224,224)),
Threshold_noise(noise_threshold),
Log_normalisation(),
transforms.Normalize(0.5, 0.5)])
print('Default val transform')
train_dataset = torchvision.datasets.ImageFolder(root=base_dir, transform=train_transform)
val_dataset = torchvision.datasets.ImageFolder(root=base_dir, transform=val_transform)
generator1 = torch.Generator().manual_seed(42)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment