Skip to content
Snippets Groups Projects
Commit d7063dce authored by Léo Calmettes's avatar Léo Calmettes
Browse files

modifié : AugmentTests.py

parent 8f15534f
No related branches found
No related tags found
No related merge requests found
...@@ -7,26 +7,27 @@ if __name__ == "__main__": ...@@ -7,26 +7,27 @@ if __name__ == "__main__":
args = load_args() args = load_args()
#On commence avec le standard #On commence avec le standard
losses = np.zeros(20); accs = np.zeros(20) # losses = np.zeros(20); accs = np.zeros(20)
for random in range(20): # for random in range(20):
args.random_state = random # args.random_state = random
losses[random], accs[random] = run_duo(args) # losses[random], accs[random] = run_duo(args)
records = pd.DataFrame([["Standard",losses.mean(),losses.std(),accs.mean(),accs.std()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"]) # records = pd.DataFrame([["Standard",losses.mean(),losses.std(),accs.mean(),accs.std()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"])
records.to_csv("output/perfs.csv",index = False) # records.to_csv("output/perfs.csv",index = False)
# #Et enfin le rt-shift #Et enfin le rt-shift
# for prob in [k/20 for k in range(1,21)]: records = pd.read_csv("output/perfs.csv")
# args.augment_args[2] = prob for prob in [k/5 for k in range(1,6)]:
# for mean in [5,10,15,20,25,30,40,50,60,70,80,90]: args.augment_args[2] = prob
# args.augment_args[5] = mean mean = 0
# for std in [mean/k for k in range(1,11)]: args.augment_args[5] = mean
# args.augment_args[6] = std for std in [k/2 for k in range(5,25,5)]:
# losses = np.zeros(5); accs = np.zeros(5) args.augment_args[6] = std
# for random in range(5): losses = np.zeros(5); accs = np.zeros(5)
# args.random_state = random for random in range(5):
# losses[random], accs[random] = run_duo(args) args.random_state = random
# records = pd.concat([records,pd.DataFrame([[f"rtShift prob{prob} mean{mean} std{std}",losses.mean(),losses.std(),accs.mean(),accs.std()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"])]) losses[random], accs[random] = run_duo(args)
# records.to_csv("output/DataAugment/perfs.csv",index = False) records = pd.concat([records,pd.DataFrame([[f"rtShift prob{prob} mean{mean} std{std}",losses.mean().item(),losses.std().item(),accs.mean().item(),accs.std().item()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"])])
records.to_csv("output/DataAugment/perfs.csv",index = False)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment