Newer
Older
import torch
import torch.optim as optim
import wandb as wdb
import common_dataset
import dataloader
from config_common import load_args
from common_dataset import load_data
from dataloader import load_data
from loss import masked_cos_sim, distance, masked_spectral_angle
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from model import RT_pred_model_self_attention_multi
def train(model, data_train, epoch, optimizer, criterion_rt, criterion_intensity, metric_rt, metric_intensity, forward,
wandb=None):
losses_rt = 0.
losses_int = 0.
dist_rt_acc = 0.
dist_int_acc = 0.
model.train()
for param in model.parameters():
param.requires_grad = True
if forward == 'both':
for seq, charge, rt, intensity in data_train:
rt, intensity = rt.float(), intensity.float()
if torch.cuda.is_available():
seq, charge, rt, intensity = seq.cuda(), charge.cuda(), rt.cuda(), intensity.cuda()
pred_rt, pred_int = model.forward(seq, charge)
loss_rt = criterion_rt(rt, pred_rt)
loss_int = criterion_intensity(intensity, pred_int)
loss = loss_rt + loss_int
dist_rt = metric_rt(rt, pred_rt)
dist_int = metric_intensity(intensity, pred_int)
dist_rt_acc += dist_rt.item()
dist_int_acc += dist_int.item()
losses_rt += loss_rt.item()
losses_int += 5.*loss_int.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if wandb is not None:
wdb.log({"train rt loss": losses_rt / len(data_train), "train int loss": losses_int / len(data_train),
"train rt mean metric": dist_rt_acc / len(data_train),
"train int mean metric": dist_int_acc / len(data_train),
'train epoch': epoch})
print('epoch : ', epoch, 'train rt loss', losses_rt / len(data_train), 'train int loss',
losses_int / len(data_train), "train rt mean metric : ", dist_rt_acc / len(data_train),
"train int mean metric",
dist_int_acc / len(data_train))
if forward == 'rt':
for seq, rt in data_train:
rt = rt.float()
if torch.cuda.is_available():
seq, rt = seq.cuda(), rt.cuda()
pred_rt = model.forward_rt(seq)
loss_rt = criterion_rt(rt, pred_rt)
loss = loss_rt
dist_rt = metric_rt(rt, pred_rt)
dist_rt_acc += dist_rt.item()
losses_rt += loss_rt.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if wandb is not None:
wdb.log({"train rt loss": losses_rt / len(data_train),
"train rt mean metric": dist_rt_acc / len(data_train),
'train epoch': epoch})
print('epoch : ', epoch, 'train rt loss', losses_rt / len(data_train), "train rt mean metric : ",
dist_rt_acc / len(data_train))
if forward == 'int':
for seq, charge, intensity in data_train:
intensity = intensity.float()
if torch.cuda.is_available():
seq, charge, intensity = seq.cuda(), charge.cuda(), intensity.cuda()
pred_int = model.forward_int(seq, charge)
loss_int = criterion_intensity(intensity, pred_int)
loss = loss_int
dist_int = metric_intensity(intensity, pred_int)
dist_int_acc += dist_int.item()
losses_int += loss_int.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if wandb is not None:
wdb.log({"train int loss": losses_int / len(data_train),
"train int mean metric": dist_int_acc / len(data_train),
'train epoch': epoch})
print('epoch : ', epoch, 'train int loss',
losses_int / len(data_train),
"train int mean metric",
dist_int_acc / len(data_train))
def eval(model, data_val, epoch, criterion_rt, criterion_intensity, metric_rt, metric_intensity, forward, wandb=None):
losses_rt = 0.
losses_int = 0.
dist_rt_acc = 0.
dist_int_acc = 0.
for param in model.parameters():
param.requires_grad = False
if forward == 'both':
for seq, charge, rt, intensity in data_val:
rt, intensity = rt.float(), intensity.float()
if torch.cuda.is_available():
seq, charge, rt, intensity = seq.cuda(), charge.cuda(), rt.cuda(), intensity.cuda()
pred_rt, pred_int = model.forward(seq, charge)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
loss_rt = criterion_rt(rt, pred_rt)
loss_int = criterion_intensity(intensity, pred_int)
losses_rt += loss_rt.item()
losses_int += loss_int.item()
dist_rt = metric_rt(rt, pred_rt)
dist_int = metric_intensity(intensity, pred_int)
dist_rt_acc += dist_rt.item()
dist_int_acc += dist_int.item()
if wandb is not None:
wdb.log({"val rt loss": losses_rt / len(data_val), "val int loss": losses_int / len(data_val),
"val rt mean metric": dist_rt_acc / len(data_val),
"val int mean metric": dist_int_acc / len(data_val),
'val epoch': epoch})
print('epoch : ', epoch, 'val rt loss', losses_rt / len(data_val), 'val int loss', losses_int / len(data_val),
"val rt mean metric : ",
dist_rt_acc / len(data_val), "val int mean metric", dist_int_acc / len(data_val))
if forward == 'rt': #adapted to prosit dataset format
for seq, rt in data_val:
rt = rt.float()
if torch.cuda.is_available():
seq, rt = seq.cuda(), rt.cuda()
pred_rt = model.forward_rt(seq)
loss_rt = criterion_rt(rt, pred_rt)
losses_rt += loss_rt.item()
dist_rt = metric_rt(rt, pred_rt)
dist_rt_acc += dist_rt.item()
if wandb is not None:
wdb.log({"val rt loss": losses_rt / len(data_val),
"val rt mean metric": dist_rt_acc / len(data_val),
'val epoch': epoch})
print('epoch : ', epoch, 'val rt loss', losses_rt / len(data_val),
"val rt mean metric : ",
dist_rt_acc / len(data_val))
if forward == 'int': #adapted to prosit dataset format
for seq, charge, _, intensity in data_val:
intensity = intensity.float()
if torch.cuda.is_available():
seq, charge, intensity = seq.cuda(), charge.cuda(), intensity.cuda()
pred_int = model.forward_int(seq, charge)
loss_int = criterion_intensity(intensity, pred_int)
losses_int += loss_int.item()
dist_int = metric_intensity(intensity, pred_int)
dist_int_acc += dist_int.item()
if wandb is not None:
wdb.log({"val int loss": losses_int / len(data_val),
"val int mean metric": dist_int_acc / len(data_val),
'val epoch': epoch})
print('epoch : ', epoch, 'val int loss', losses_int / len(data_val), "val int mean metric",
dist_int_acc / len(data_val))
def run(epochs, eval_inter, save_inter, model, data_train, data_val, data_test, optimizer, criterion_rt,
criterion_intensity, metric_rt, metric_intensity, forward, wandb=None, output='output/out.csv', file=False):
if forward =='transfer' :
for e in range(1, epochs + 1):
train(model, data_train, e, optimizer, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'rt',
wandb=wandb)
if e % eval_inter == 0:
eval(model, data_val, e, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'both',
wandb=wandb)
if e % save_inter == 0:
save(model, 'model_common_' + str(e) + '.pt')
elif forward=='reverse':
for e in range(1, epochs + 1):
train(model, data_train, e, optimizer, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'both',
wandb=wandb)
if e % eval_inter == 0:
eval(model, data_val, e, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'rt',
wandb=wandb)
if e % save_inter == 0:
save(model, 'model_common_' + str(e) + '.pt')
save_pred(model, data_val, 'rt', output)
else :
for e in range(1, epochs + 1):
train(model, data_train, e, optimizer, criterion_rt, criterion_intensity, metric_rt, metric_intensity, forward,
wandb=wandb)
if e % eval_inter == 0:
eval(model, data_val, e, criterion_rt, criterion_intensity, metric_rt, metric_intensity, forward,
wandb=wandb)
# if e % save_inter == 0:
# save(model, 'model_common_' + str(e) + '.pt')
save_pred(model, data_val, forward, output, file=file)
def main(args):
if args.wandb is not None:
os.environ["WANDB_API_KEY"] = 'b4a27ac6b6145e1a5d0ee7f9e2e8c20bd101dccd'
os.environ["WANDB_MODE"] = "offline"
os.environ["WANDB_DIR"] = os.path.abspath("./wandb_run")
wdb.init(project="Common prediction", dir='./wandb_run', name=args.wandb)
print(args)
print('Cuda : ', torch.cuda.is_available())
if args.forward == 'both':
data_train, data_val = common_dataset.load_data(path_train=args.dataset_train,
batch_size=args.batch_size, length=args.seq_length, pad = False, convert=False, vocab='unmod')
data_train, data_val = dataloader.load_data(data_sources=[args.dataset_train,args.dataset_val,args.dataset_test],
data_train, _ = dataloader.load_data(data_sources=[args.dataset_train,'database/data_holdout.csv','database/data_holdout.csv'],
_, data_val = common_dataset.load_data(path_train=args.dataset_val,
path_val=args.dataset_val,
path_test=args.dataset_test,
batch_size=args.batch_size, length=args.seq_length, pad = True, convert=True, vocab='unmod')
_, data_val = dataloader.load_data(data_sources=['database/data_train.csv',args.dataset_val,args.dataset_test],
data_train, _ = common_dataset.load_data(path_train=args.dataset_train,
path_val=args.dataset_train,
path_test=args.dataset_train,
batch_size=args.batch_size, length=args.seq_length, pad = True, convert=True, vocab='unmod')
model = Model_Common_Transformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff,
decoder_int_ff=args.decoder_int_ff
, n_head=args.n_head, encoder_num_layer=args.encoder_num_layer,
decoder_int_num_layer=args.decoder_int_num_layer,
decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate,
embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first,
seq_length=args.seq_length)
if torch.cuda.is_available():
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
print('\nModel initialised')
run(epochs=args.epochs, eval_inter=args.eval_inter, save_inter=args.save_inter, model=model, data_train=data_train,
data_val=data_val, data_test=data_val, optimizer=optimizer, criterion_rt=torch.nn.MSELoss(),
criterion_intensity=masked_cos_sim, metric_rt=distance, metric_intensity=masked_spectral_angle,
wandb=args.wandb, forward=args.forward, output=args.output, file=args.file)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
if args.wandb is not None:
wdb.finish()
def save(model, checkpoint_name):
print('\nModel Saving...')
os.makedirs('checkpoints', exist_ok=True)
torch.save(model, os.path.join('checkpoints', checkpoint_name))
def load(path):
model = torch.load(os.path.join('checkpoints', path))
return model
def get_n_params(model):
pp = 0
for n, p in list(model.named_parameters()):
nn = 1
for s in list(p.size()):
nn = nn * s
pp += nn
return pp
def save_pred(model, data_val, forward, output_path, file = False):
for param in model.parameters():
param.requires_grad = False
if forward == 'both':
pred_rt, pred_int, seqs, charges, true_rt, true_int, file_list = [], [], [], [], [], [], []
if file:
data_val.dataset.set_file_mode(True)
for seq, charge, rt, intensity, files in data_val:
seq, charge, rt, intensity, files = seq.cuda(), charge.cuda(), rt.cuda(), intensity.cuda(), files.cuda()
pr_rt, pr_intensity = model.forward(seq, charge)
pred_rt.extend(pr_rt.data.cpu().tolist())
pred_int.extend(pr_intensity.data.cpu().tolist())
seqs.extend(seq.data.cpu().tolist())
charges.extend(charge.data.cpu().tolist())
true_rt.extend(rt.data.cpu().tolist())
true_int.extend(intensity.data.cpu().tolist())
else :
for seq, charge, rt, intensity in data_val:
rt, intensity = rt.float(), intensity.float()
if torch.cuda.is_available():
seq, charge, rt, intensity = seq.cuda(), charge.cuda(), rt.cuda(), intensity.cuda()
pr_rt, pr_intensity = model.forward(seq, charge)
pred_rt.extend(pr_rt.data.cpu().tolist())
pred_int.extend(pr_intensity.data.cpu().tolist())
seqs.extend(seq.data.cpu().tolist())
charges.extend(charge.data.cpu().tolist())
true_rt.extend(rt.data.cpu().tolist())
true_int.extend(intensity.data.cpu().tolist())
data_frame['rt pred'] = pred_rt
data_frame['seq'] = seqs
data_frame['pred int'] = pred_int
data_frame['true rt'] = true_rt
data_frame['true int'] = true_int
data_frame['charge'] = charges
if forward == 'rt': #adapted to prosit dataset format
pred_rt, seqs, true_rt = [], [], []
for seq, rt in data_val:
rt = rt.float()
if torch.cuda.is_available():
seq, rt = seq.cuda(), rt.cuda()
pr_rt = model.forward_rt(seq)
pred_rt.extend(pr_rt.data.cpu().tolist())
seqs.extend(seq.data.cpu().tolist())
true_rt.extend(rt.data.cpu().tolist())
data_frame['rt pred'] = pred_rt
data_frame['seq'] = seqs
data_frame['true rt'] = true_rt
if forward == 'int': #adapted to prosit dataset format
pred_int, seqs, charges, true_int = [], [], [], []
for seq, charge, _, intensity in data_val:
intensity = intensity.float()
if torch.cuda.is_available():
seq, charge, intensity = seq.cuda(), charge.cuda(), intensity.cuda()
pred_int = model.forward_int(seq, charge)
seqs.extend(seq.data.cpu().tolist())
charges.extend(charge.data.cpu().tolist())
true_int.extend(intensity.data.cpu().tolist())
data_frame['seq'] = seqs
data_frame['pred int'] = pred_int
data_frame['true int'] = true_int
data_frame['charge'] = charges
if file :
data_val.dataset.set_file_mode(False)
if __name__ == "__main__":
args = load_args()
main(args)