Skip to content
Snippets Groups Projects
Commit 89b71acf authored by Schneider Leo's avatar Schneider Leo
Browse files

local integration working

parent ea9368b2
No related branches found
No related tags found
No related merge requests found
......@@ -254,7 +254,7 @@ def add_length(dataframe):
dataframe['length']=dataframe['seq'].map(fonc)
# df = pd.read_csv('output/out_common_ISA_ISA_eval.csv')
df = pd.read_csv('output/out_common_ISA_ISA_eval_2.csv')
# add_length(df)
# df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval.png')
......@@ -275,11 +275,11 @@ def add_length(dataframe):
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_prosit_ISA_eval.png', color=True)
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_prosit_ISA_eval.png')
# df = pd.read_csv('output/out_common_ISA_ISA_eval_2.csv')
# df = pd.read_csv('output/out_common_ISA_ISA_eval_3.csv')
# add_length(df)
# df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval_2.png')
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_ISA_eval_2_seq.png', color=True, col = 'seq')
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_ISA_eval_2.png')
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval_3.png')
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_ISA_eval_3_file.png', color=True, col = 'file')
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_ISA_eval_3.png')
......@@ -186,6 +186,16 @@ def run(epochs, eval_inter, save_inter, model, data_train, data_val, data_test,
if e % save_inter == 0:
save(model, 'model_common_' + str(e) + '.pt')
save_pred(model, data_val, 'both', output)
elif forward=='reverse':
for e in range(1, epochs + 1):
train(model, data_train, e, optimizer, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'both',
wandb=wandb)
if e % eval_inter == 0:
eval(model, data_val, e, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'rt',
wandb=wandb)
if e % save_inter == 0:
save(model, 'model_common_' + str(e) + '.pt')
save_pred(model, data_val, 'rt', output)
else :
for e in range(1, epochs + 1):
......@@ -213,7 +223,7 @@ def main(args):
data_train, data_val, data_test = common_dataset.load_data(path_train=args.dataset_train,
path_val=args.dataset_val,
path_test=args.dataset_test,
batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='iapuc')
batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='unmod')
elif args.forward == 'rt':
data_train, data_val, data_test = dataloader.load_data(data_sources=[args.dataset_train,args.dataset_val,args.dataset_test],
batch_size=args.batch_size, length=25)
......@@ -225,7 +235,16 @@ def main(args):
_, data_val, data_test = common_dataset.load_data(path_train=args.dataset_val,
path_val=args.dataset_val,
path_test=args.dataset_test,
batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='iapuc')
batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='unmod')
elif args.forward == 'reverse':
_, data_val, data_test = dataloader.load_data(data_sources=['database/data_holdout.csv',args.dataset_val,args.dataset_test],
batch_size=args.batch_size, length=25)
data_train, _, _ = common_dataset.load_data(path_train=args.dataset_train,
path_val=args.dataset_train,
path_test=args.dataset_train,
batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='unmod')
print('\nData loaded')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment