Newer
Older
import numpy as np
import pandas as pd
from loess.loess_1d import loess_1d
"A": 1,
"C": 2,
"D": 3,
"E": 4,
"F": 5,
"G": 6,
"H": 7,
"I": 8,
"K": 9,
"L": 10,
"M": 11,
"N": 12,
"P": 13,
"Q": 14,
"R": 15,
"S": 16,
"T": 17,
"V": 18,
"W": 19,
"Y": 20,
"CaC": 21,
"OxM": 22
}
ALPHABET_UNMOD_REV = {v: k for k, v in ALPHABET_UNMOD.items()}
def numerical_to_alphabetical(arr):
seq = ''
for i in range(len(arr)):
seq+=ALPHABET_UNMOD_REV[arr[i]]
return seq
def align(dataset, reference):
seq_common = dataset['Sequence']
seq_ref = seq_ref.tolist()
seq_common = seq_common.tolist()
seq_ref = [tuple(l) for l in seq_ref]
seq_common = [tuple(l) for l in seq_common]
ind_dict_ref = dict((k, i) for i, k in enumerate(seq_ref))
inter = set(ind_dict_ref).intersection(seq_common)
ind_dict_ref = [ind_dict_ref[x] for x in inter]
indices_common = dict((k, i) for i, k in enumerate(seq_common))
indices_common = [indices_common[x] for x in inter]
rt_ref = reference['Retention time'][ind_dict_ref].reset_index()
rt_data = dataset['Retention time'][indices_common].reset_index()
xout, yout, wout = loess_1d(np.array(rt_data['Retention time'].tolist()), np.array(rt_ref['Retention time'].tolist()),
xnew=dataset['Retention time'],
degree=1, frac=0.5,
npoints=None, rotate=False, sigy=None)
dataset['Retention time'] = yout
return dataset
def filter_cysteine(df, col):
def map_cys(str):
return not('C' in str)
df['cys'] = df[col].map(map_cys)
data = df[df['cys']].reset_index(drop=True)
return data
def compare_include_df(df, sub_df, save = True, path = 'temp.png'):
df_value_list = []
df_sub_value_list=[]
i=0
for r in sub_df.iterrows() :
print(i)
i+=1
try :
df_value_list.append(df[df['Sequence']==r[1]['Sequence']]['Retention time'].reset_index(drop=True)[0])
df_sub_value_list.append(r[1]['Retention time'])
except:
pass
fig, ax = plt.subplots()
ax.scatter(df_sub_value_list, df_value_list)
if save :
plt.savefig(path)
plt.clf()
return df_value_list, df_sub_value_list
# data_ori = load_data('msms/msms30_01.txt').reset_index(drop=True)
# # data_ori['sequence'] = data_ori['sequence'].map(numerical_to_alphabetical)
#
# data_train = load_data('msms/msms16_01.txt').reset_index(drop=True)
# # data_train = pd.read_pickle('database/data_DIA_16_01.pkl').reset_index(drop=True)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# data_align.to_pickle('database/data_DIA_16_01_aligned30_01.pkl')
#
# data_train = load_data('msms/msms17_01.txt').reset_index(drop=True)
# # data_train = pd.read_pickle('database/data_DIA_17_01.pkl').reset_index(drop=True)
# data_align = align(data_train, data_ori)
# data_align.to_pickle('database/data_DIA_17_01_aligned30_01.pkl')
#
# data_train = load_data('msms/msms20_01.txt').reset_index(drop=True)
# # data_train = pd.read_pickle('database/data_DIA_20_01.pkl').reset_index(drop=True)
# data_align = align(data_train, data_ori)
# data_align.to_pickle('database/data_DIA_20_01_aligned30_01.pkl')
#
# data_train = load_data('msms/msms23_01.txt').reset_index(drop=True)
# # data_train = pd.read_pickle('database/data_DIA_23_01.pkl').reset_index(drop=True)
# data_align = align(data_train, data_ori)
# data_align.to_pickle('database/data_DIA_23_01_aligned30_01.pkl')
#
# data_train = load_data('msms/msms24_01.txt').reset_index(drop=True)
# # data_train = pd.read_pickle('database/data_DIA_24_01.pkl').reset_index(drop=True)
# data_align = align(data_train, data_ori)
# data_align.to_pickle('database/data_DIA_24_01_aligned30_01.pkl')
#
# data_train = load_data('msms/msms30_01.txt').reset_index(drop=True)
# data_train = pd.read_pickle('database/data_DIA_30_01.pkl').reset_index(drop=True)
# # data_align = align(data_train, data_ori)
# data_train.to_pickle('database/data_DIA_30_01_aligned30_01.pkl')
# plt.scatter(data_train['Retention time'], data_align['Retention time'], s=1)
# plt.savefig('test_align_2.png')
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#
# dataset_ref = pd.read_pickle('database/data_01_16_DIA_ISA_55.pkl')
# data_ref = Common_Dataset(dataset_ref, 25).data
# dataset_2 = pd.read_pickle('database/data_01_20_DIA_ISA_55.pkl')
# data_2 = Common_Dataset(dataset_2, 25).data
# dataset_3 = pd.read_pickle('database/data_01_17_DIA_ISA_55.pkl')
# data_3 = Common_Dataset(dataset_3, 25).data
# dataset_4 = pd.read_pickle('database/data_01_23_DIA_ISA_55.pkl')
# data_4 = Common_Dataset(dataset_4, 25).data
# data_align_3 = align(data_3, data_ref)
# data_align_4 = align(data_4, data_ref)
#
# data = pd.concat([data_ref, data_2, data_align_3, data_align_4], ignore_index=True)
# data = data.drop(columns='index')
# data['Sequence'] = data['Sequence'].map(numerical_to_alphabetical)
# num_data = data.shape[0]
# train_num = np.floor(num_data*0.8)
# train_size=0
# list_train=[]
# list_test=[]
# groups = data.groupby('Sequence')
# for seq, gr in groups:
#
# train_size+= gr.shape[0]
#
# if train_size>train_num:
# list_test.append(gr)
# else:
# list_train.append(gr)
#
#
# dataset_train = pd.concat(list_train, ignore_index=True)
# dataset_test = pd.concat(list_test, ignore_index=True)
# dataset_train.to_pickle('database/data_DIA_ISA_55_train.pkl')
# dataset_train.to_pickle('database/data_DIA_ISA_55_test.pkl')
# data_train_1 = pd.read_pickle('database/data_DIA_ISA_55_test_30_01.pkl').reset_index(drop=True)
# data_train_2 = pd.read_pickle('database/data_DIA_ISA_55_train_30_01.pkl').reset_index(drop=True)
# data_ori = pd.read_csv('database/data_train.csv').reset_index(drop=True)
# data_ori['Sequence']=data_ori['sequence']
# data_ori['Retention time']=data_ori['irt']
# data_train = pd.concat([data_train_2,data_train_1]).reset_index(drop=True)
# data_align = align(data_train, data_ori)
#
# data_align.to_pickle('database/data_ISA_dual_align.pkl')
df_ori = pd.read_csv('database/data_train.csv')
df_ori['Sequence']=df_ori['sequence']
df_ori['Retention time']=df_ori['irt']
df_diann = pd.read_csv('database/CIT_BASE_UP000584719_546.csv')
df_ISA = pd.read_pickle('database/data_ISA_dual_align.pkl')
df_diann_aligned = align(df_diann, df_ori)
df_value_list, df_sub_value_list = compare_include_df(df_diann_aligned, df_ISA, True)
import scipy as sp
from sklearn.metrics import r2_score
fig, ax = plt.subplots()
ax.scatter(df_sub_value_list, df_value_list, s=0.1,alpha=0.1)
x = np.array([min(df_value_list), max(df_value_list)])
linreg = sp.stats.linregress(df_value_list, df_sub_value_list)
ax.annotate("r-squared = {:.3f}".format(r2_score(df_value_list, df_sub_value_list)), (0, 1))
plt.plot(x, linreg.intercept + linreg.slope * x, 'r')
plt.savefig('scatter_DIANN-ISA_aligned_on_prosit.png')
plt.clf()