-
Schneider Leo authored4b2bf25b
data_viz.py 12.14 KiB
import scipy as sp
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
import numpy as np
import random
import pandas as pd
import matplotlib.colors as mcolors
from mass_prediction import compute_frag_mz_ration
seq = 'YEEEFLR'
def data(a):
b=a+a
return b
# int = np.random.rand(174)
names = ['b1(+)', 'y1(+)', 'b1(2+)', 'y1(2+)', 'b1(3+)', 'y1(3+)','b2(+)', 'y2(+)', 'b2(2+)', 'y2(2+)', 'b2(3+)', 'y2(3+)',
'b3(+)', 'y3(+)', 'b3(2+)', 'y3(2+)', 'b3(3+)', 'y3(3+)', 'b4(+)', 'y4(+)', 'b4(2+)', 'y4(2+)', 'b4(3+)',
'y4(3+)','b5(+)', 'y5(+)', 'b5(2+)', 'y5(2+)', 'b5(3+)', 'y5(3+)','b6(+)', 'y6(+)', 'b6(2+)', 'y6(2+)',
'b6(3+)', 'y6(3+)','b7(+)', 'y7(+)', 'b7(2+)', 'y7(2+)', 'b7(3+)', 'y7(3+)','b8(+)', 'y8(+)', 'b8(2+)',
'y8(2+)', 'b8(3+)', 'y8(3+)','b9(+)', 'y9(+)', 'b9(2+)', 'y9(2+)', 'b9(3+)', 'y9(3+)','b10(+)', 'y10(+)',
'b10(2+)', 'y10(2+)', 'b10(3+)', 'y10(3+)','b11(+)', 'y11(+)', 'b11(2+)', 'y11(2+)', 'b11(3+)', 'y11(3+)',
'b12(+)', 'y12(+)', 'b12(2+)', 'y12(2+)', 'b12(3+)', 'y12(3+)', 'b13(+)', 'y13(+)', 'b13(2+)', 'y13(2+)',
'b13(3+)', 'y13(3+)','b14(+)', 'y14(+)', 'b14(2+)', 'y14(2+)', 'b14(3+)', 'y14(3+)','b15(+)', 'y15(+)',
'b15(2+)', 'y15(2+)', 'b15(3+)', 'y15(3+)', 'b16(+)', 'y16(+)', 'b16(2+)', 'y16(2+)', 'b16(3+)', 'y16(3+)',
'b17(+)', 'y17(+)', 'b17(2+)', 'y17(2+)', 'b17(3+)', 'y17(3+)','b18(+)', 'y18(+)', 'b18(2+)', 'y18(2+)',
'b18(3+)', 'y18(3+)','b19(+)', 'y19(+)', 'b19(2+)', 'y19(2+)', 'b19(3+)', 'y19(3+)','b20(+)', 'y20(+)',
'b20(2+)', 'y20(2+)', 'b20(3+)', 'y20(3+)','b21(+)', 'y21(+)', 'b21(2+)', 'y21(2+)', 'b21(3+)', 'y21(3+)',
'b22(+)', 'y22(+)', 'b22(2+)', 'y22(2+)', 'b22(3+)', 'y22(3+)','b23(+)', 'y23(+)', 'b23(2+)', 'y23(2+)',
'b23(3+)', 'y23(3+)','b24(+)', 'y24(+)', 'b24(2+)', 'y24(2+)', 'b24(3+)', 'y24(3+)','b25(+)', 'y25(+)',
'b25(2+)', 'y25(2+)', 'b25(3+)', 'y25(3+)','b26(+)', 'y26(+)', 'b26(2+)', 'y26(2+)', 'b26(3+)', 'y26(3+)',
'b27(+)', 'y27(+)', 'b27(2+)', 'y27(2+)', 'b27(3+)', 'y27(3+)','b28(+)', 'y28(+)', 'b28(2+)', 'y28(2+)',
'b28(3+)', 'y28(3+)','b29(+)', 'y29(+)', 'b29(2+)', 'y29(2+)', 'b29(3+)', 'y29(3+)']
names = np.array(names)
def frag_spectra(int, seq):
masses = compute_frag_mz_ration(seq,'mono')
msk = [el!=-1. for el in int]
# Choose some nice levels
levels = int[msk]
dates = masses[msk]
# Create figure and plot a stem plot with the date
fig, ax = plt.subplots(figsize=(8.8, 4), constrained_layout=True)
ax.set(title=seq + " fragmentation spectra")
ax.vlines(dates, 0, levels, color="tab:red") # The vertical stems.
ax.plot(dates, np.zeros_like(dates),
color="k", markerfacecolor="w") # Baseline and markers on it.
# annotate lines
for d, l, r in zip(dates, levels, names):
ax.annotate(r, xy=(d, l),
xytext=(-3, np.sign(l) * 3), textcoords="offset points",
horizontalalignment="right",
verticalalignment="bottom" if l > 0 else "top")
plt.setp(ax.get_xticklabels(), rotation=30, ha="right")
# remove y axis and spines
ax.yaxis.set_visible(False)
ax.spines[["left", "top", "right"]].set_visible(False)
ax.margins(y=0.1)
plt.show()
def frag_spectra_comparison(int_1, seq_1, int_2, seq_2=None):
if seq_2 is None :
seq_2 = seq_1
masses_1 = compute_frag_mz_ration(seq_1,'mono')
msk_1 = [el!=-1 for el in int_1]
levels_1 = int_1[msk_1]
dates_1 = masses_1[msk_1]
names_1 = names[msk_1]
masses_2 = compute_frag_mz_ration(seq_2, 'mono')
msk_2 = [el != -1. for el in int_2]
levels_2 = int_2[msk_2]
dates_2 = masses_2[msk_2]
names_2 = names[msk_2]
# Create figure and plot a stem plot with the date
fig, ax = plt.subplots(figsize=(8.8, 4), constrained_layout=True)
ax.set(title=seq_1 + " / " +seq_2 + " fragmentation spectra comparison")
ax.vlines(dates_1, 0, levels_1, color="tab:red") # The vertical stems.
ax.plot(dates_1, np.zeros_like(dates_1),
color="k", markerfacecolor="w") # Baseline and markers on it.
# annotate lines
for d, l, r in zip(dates_1, levels_1, names_1):
ax.annotate(r, xy=(d, l),
xytext=(-3, np.sign(l) * 3), textcoords="offset points",
horizontalalignment="right",
verticalalignment="bottom" if l > 0 else "top")
ax.vlines(dates_2, 0, -levels_2, color="tab:blue") # The vertical stems.
ax.plot(dates_2, np.zeros_like(dates_2),
color="k", markerfacecolor="w") # Baseline and markers on it.
# annotate lines
for d, l, r in zip(dates_2, -levels_2, names_2):
ax.annotate(r, xy=(d, l),
xytext=(-3, np.sign(l) * 3), textcoords="offset points",
horizontalalignment="right",
verticalalignment="bottom" if l > 0 else "top")
plt.setp(ax.get_xticklabels(), rotation=30, ha="right")
# remove y axis and spines
ax.yaxis.set_visible(False)
ax.spines[["left", "top", "right"]].set_visible(False)
ax.margins(y=0.1)
plt.show()
def histo_abs_error(dataframe, display=False, save=False, path=None):
points = dataframe['abs_error']
## combine these different collections into a list
data_to_plot = [points]
# Create a figure instance
fig, ax = plt.subplots()
# Create the boxplot
ax.set_xlabel('abs error')
ax.violinplot(data_to_plot, vert=False, side='high', showmedians=True, quantiles=[0.95])
ax.set_xlim(0,175)
if display :
plt.show()
if save :
plt.savefig(path)
def random_color_deterministic(df, column):
def rd10(str):
color = list(mcolors.CSS4_COLORS)
random.seed(str)
return color[random.randint(0,147)]
df['color']=df[column].map(rd10)
def scatter_rt(dataframe, display=False, save=False, path=None, color = False, col = 'seq'):
fig, ax = plt.subplots()
if color :
random_color_deterministic(dataframe, col)
ax.scatter(dataframe['true rt'], dataframe['rt pred'], s=.1, color = dataframe['color'])
else :
ax.scatter(dataframe['true rt'], dataframe['rt pred'], s=.1)
ax.set_xlabel('true RT')
ax.set_ylabel('pred RT')
x = np.array([min(dataframe['true rt']), max(dataframe['true rt'])])
linreg = sp.stats.linregress(dataframe['true rt'], dataframe['rt pred'])
ax.annotate("r-squared = {:.3f}".format(r2_score(dataframe['true rt'], dataframe['rt pred'])), (0, 1))
plt.plot(x, linreg.intercept + linreg.slope * x, 'r')
if display :
plt.show()
if save :
plt.savefig(path)
def histo_abs_error_by_length(dataframe, display=False, save=False, path=None):
data_to_plot =[]
max_length = max(dataframe['length'])
min_length = min(dataframe['length'])
for l in range(min_length, max_length):
data_to_plot.append(dataframe['abs_error'].where(dataframe['length']==l))
# data_to_plot.append()
fig, ax = plt.subplots()
# Create the boxplot
bp = ax.violinplot(data_to_plot, vert=True, side='low')
if display:
plt.show()
if save:
plt.savefig(path)
def running_mean(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / float(N)
def histo_length_by_error(dataframe, bins, display=False, save=False, path=None):
data_to_plot = []
quanti = []
max_error = max(dataframe['abs_error'])
inter = np.linspace(0, max_error, num=bins+1)
inter_m = running_mean(inter, 2)
inter_labels = list(map(lambda x : round(x,2),inter_m))
inter_labels.insert(0,0)
for i in range(bins):
a = dataframe.loc[(inter[i] < dataframe['abs_error']) & (dataframe['abs_error'] < inter[i+1])]['length']
if len(a)>0:
data_to_plot.append(a)
quanti.append(0.95)
else :
data_to_plot.append([0])
quanti.append(0.95)
fig, ax = plt.subplots()
# Create the boxplot
ax.violinplot(data_to_plot, vert=True, side='high', showmedians=True)
ax.set_ylabel('length')
ax.set_xticks(range(len(inter)),inter_labels)
if display:
plt.show()
if save:
plt.savefig(path)
def compare_error(df1, df2, display=False, save=False, path=None):
df1['abs err 1'] = df1['rt pred'] - df1['true rt']
df2['abs err 2'] = df2['rt pred'] - df2['true rt']
df_group_1 = df1.groupby(['seq'])['abs err 1'].mean().to_frame().reset_index()
df_group_2 = df2.groupby(['seq'])['abs err 2'].mean().to_frame().reset_index()
df = pd.concat([df_group_1,df_group_2],axis=1)
fig, ax = plt.subplots()
ax.scatter(df['abs err 1'], df['abs err 2'], s=0.1, alpha=0.05)
plt.savefig('temp.png')
if display:
plt.show()
if save:
plt.savefig(path)
def select_best_data(df1,df2,threshold):
df1['abs err 1'] = abs(df1['rt pred'] - df1['true rt'])
df2['abs err 2'] = abs(df2['rt pred'] - df2['true rt'])
df_group_1 = df1.groupby(['seq'])['abs err 1'].mean().to_frame().reset_index()
df_group_2 = df2.groupby(['seq'])['abs err 2'].mean().to_frame().reset_index()
df = pd.concat([df_group_1, df_group_2], axis=1)
df['mean']=(df['abs err 1']+df['abs err 2'])/2
df_res = df[df['mean']<threshold]
df_res = df_res['seq']
df_res.columns = ['seq','temp']
df_res = df_res['seq']
good_seq=[]
good_rt=[]
for r in df1.iterrows() :
if r[1]['seq'] in df_res.values :
good_rt.append(r[1]['true rt'])
good_seq.append(r[1]['seq'])
return pd.DataFrame({'Sequence' : good_seq, 'Retention time': good_rt})
def add_length(dataframe):
def fonc(a):
a = a.replace('[', '')
a = a.replace(']', '')
a = a.split(',')
a = list(map(int, a))
return np.count_nonzero(np.array(a))
dataframe['length']=dataframe['seq'].map(fonc)
df = pd.read_csv('output/out_common_ISA_augmented_10_eval.csv')
add_length(df)
df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_SA_augmented_10_eval.png')
scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_SA_augmented_10_eval.png', color=True)
histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_SA_augmented_10_eval.png')
#
# df = pd.read_csv('output/out_common_ISA_augmented_3_eval.csv')
# add_length(df)
# df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_augmented_3_eval.png')
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_augmented_3_eval.png', color=True)
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_augmented_3_eval.png')
#
# df = pd.read_csv('output/out_common_prosit_ISA_eval_3.csv')
# add_length(df)
# df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_prosit_ISA_eval_3.png')
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_prosit_ISA_eval_3.png', color=True)
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_prosit_ISA_eval_3.png')
# df = pd.read_csv('output/out_common_ISA_prosit_eval.csv')
# add_length(df)
# df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_prosit_eval.png')
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_prosit_eval.png', color=True, col = 'seq')
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_prosit_eval.png')
## Compare error variation between run
## Prosit column changes affect some peptides more than others (but consistently)
# df_1 = pd.read_csv('output/out_common_ISA_prosit_eval.csv')
# df_2 = pd.read_csv('output/out_common_ISA_prosit_eval_2.csv')
#
# df = select_best_data(df_1, df_2, 7)
# df.to_pickle('database/data_prosit_threshold_7.pkl')
# compare_error(df_1,df_2,save=True,path='fig/custom model res/ISA_prosit_error_variation.png')