Skip to content
Snippets Groups Projects
Commit 55782a1e authored by Schneider Leo's avatar Schneider Leo
Browse files

datasets

parent 0fc8a127
No related branches found
No related tags found
No related merge requests found
......@@ -37,7 +37,7 @@ def masked_spectral_angle(y_true, y_pred):
true_masked = F.normalize(true_masked, p=2, dim=1)
# print(pred_masked.sum(dim=1))
# print((pred_masked * true_masked).sum(dim=1).shape)
return 1 -2 * torch.acos((pred_masked * true_masked).sum(dim=1)).mean() / np.pi
return 1 -2 * torch.acos((pred_masked * true_masked).sum(dim=1).mean()) / np.pi
def masked_pearson_correlation_distance(y_true, y_pred, reduce='mean'):
......
......@@ -24,6 +24,7 @@ def train(model, data_train, epoch, optimizer, criterion_rt, criterion_intensity
for param in model.parameters():
param.requires_grad = True
if forward == 'both':
i=0
for seq, charge, rt, intensity in data_train:
rt, intensity = rt.float(), intensity.float()
if torch.cuda.is_available():
......@@ -41,6 +42,7 @@ def train(model, data_train, epoch, optimizer, criterion_rt, criterion_intensity
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(i,'/',len(data_train))
if wandb is not None:
wdb.log({"train rt loss": losses_rt / len(data_train), "train int loss": losses_int / len(data_train),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment