Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
EDdA Classification
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Projet GEODE
EDdA Classification
Commits
b98176ec
Commit
b98176ec
authored
4 years ago
by
Khalleud
Browse files
Options
Downloads
Patches
Plain Diff
[FIX] update doc2vec in feature extractor
parent
631df416
No related branches found
No related tags found
1 merge request
!4
Branch dev vectorization feature
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
features_extractor.py
+24
-21
24 additions, 21 deletions
features_extractor.py
with
24 additions
and
21 deletions
features_extractor.py
+
24
−
21
View file @
b98176ec
...
...
@@ -8,6 +8,7 @@ import pandas as pd
import
numpy
as
np
from
gensim.models.doc2vec
import
Doc2Vec
,
TaggedDocument
from
nltk.tokenize
import
word_tokenize
import
spacy
class
feature_extractor
:
...
...
@@ -60,36 +61,38 @@ class feature_extractor:
def
doc2vec
(
self
,
max_epochs
,
vec_size
,
alpha
=
0.025
,
dm
=
1
):
#tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
tagged_tr
=
[
TaggedDocument
(
words
=
word_tokenize
(
_d
.
lower
()),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_train
)]
#Tag test set
tagged_test
=
[
TaggedDocument
(
words
=
word_tokenize
(
_d
.
lower
()),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_test
)]
def
doc2vec
(
self
,
max_epochs
,
doc2vec_vec_size
,
doc2vec_min_count
,
doc2vec_dm
):
nlp
=
spacy
.
load
(
"
fr_core_news_sm
"
)
stopWords
=
set
(
stopwords
.
words
(
'
french
'
))
model
=
Doc2Vec
(
vector_size
=
vec_size
,
alpha
=
alpha
,
min_alpha
=
0.00025
,
min_count
=
1
,
dm
=
1
)
model
.
build_vocab
(
tagged_tr
)
for
epoch
in
range
(
max_epochs
):
print
(
'
iteration {0}
'
.
format
(
epoch
))
model
.
train
(
tagged_tr
,
total_examples
=
model
.
corpus_count
,
epochs
=
model
.
iter
)
# decrease the learning rate
model
.
alpha
-=
0.0002
# fix the learning rate, no decay
model
.
min_alpha
=
model
.
alpha
def
tokenize_fr_text
(
sentence
):
result
=
string
.
punctuation
# Tokeniser la phrase
doc
=
nlp
(
sentence
)
# Retourner le texte de chaque token
return
[
X
.
text
.
lower
()
for
X
in
doc
if
not
X
.
text
in
stopWords
and
not
X
.
text
in
result
and
not
len
(
X
.
text
)
<
2
]
#tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
tagged_tr
=
[
TaggedDocument
(
words
=
tokenize_fr_text
(
_d
),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_train
)]
#Tag test set
tagged_test
=
[
TaggedDocument
(
words
=
tokenize_fr_text
(
_d
),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_test
)]
model
=
Doc2Vec
(
vector_size
=
doc2vec_vec_size
,
min_count
=
doc2vec_min_count
,
dm
=
doc2vec_dm
)
model
.
build_vocab
(
tagged_tr
)
model
.
train
(
tagged_tr
,
total_examples
=
model
.
corpus_count
,
epochs
=
max_epochs
)
set_tags
=
list
(
model
.
docvecs
.
doctags
)
nb_docs_small
=
len
(
set_tags
)
doc_vec_doc2vec
=
np
.
zeros
(
shape
=
(
nb_docs_small
,
vec_size
))
#i = 0
#for t in set_tags:
# doc_vec_doc2vec[i] = model.docvecs[t]
# i += 1
X_train
=
np
.
array
([
model
.
docvecs
[
str
(
i
)]
for
i
in
range
(
len
(
tagged_tr
))])
X_test
=
np
.
array
([
model
.
infer_vector
(
tagged_test
[
i
][
0
])
for
i
in
range
(
len
(
tagged_test
))])
return
X_train
,
X_test
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment