Skip to content
Snippets Groups Projects
Commit 4b2bf25b authored by Schneider Leo's avatar Schneider Leo
Browse files

datasets

parent 85e4a949
No related branches found
No related tags found
No related merge requests found
...@@ -275,15 +275,12 @@ def add_length(dataframe): ...@@ -275,15 +275,12 @@ def add_length(dataframe):
dataframe['length']=dataframe['seq'].map(fonc) dataframe['length']=dataframe['seq'].map(fonc)
df = pd.read_csv('output/out_common_ISA_ISA_eval_2.csv') df = pd.read_csv('output/out_common_ISA_augmented_10_eval.csv')
add_length(df) add_length(df)
df['rt pred'] = 0 df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
for seq, gr in df.groupby('seq') : histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_SA_augmented_10_eval.png')
df.loc[df['seq']==seq,'rt pred']=gr['true rt'].mean() scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_SA_augmented_10_eval.png', color=True)
# df['abs_error'] = np.abs(df['rt pred']-df['true rt']) histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_SA_augmented_10_eval.png')
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval.png')
scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_ISA_best_possible.png', color=True)
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_ISA_eval.png')
# #
# df = pd.read_csv('output/out_common_ISA_augmented_3_eval.csv') # df = pd.read_csv('output/out_common_ISA_augmented_3_eval.csv')
# add_length(df) # add_length(df)
...@@ -308,10 +305,10 @@ scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_ ...@@ -308,10 +305,10 @@ scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_
## Compare error variation between run ## Compare error variation between run
## Prosit column changes affect some peptides more than others (but consistently) ## Prosit column changes affect some peptides more than others (but consistently)
df_1 = pd.read_csv('output/out_common_ISA_prosit_eval.csv') # df_1 = pd.read_csv('output/out_common_ISA_prosit_eval.csv')
df_2 = pd.read_csv('output/out_common_ISA_prosit_eval_2.csv') # df_2 = pd.read_csv('output/out_common_ISA_prosit_eval_2.csv')
#
df = select_best_data(df_1, df_2, 7) # df = select_best_data(df_1, df_2, 7)
df.to_pickle('database/data_prosit_threshold_7.pkl') # df.to_pickle('database/data_prosit_threshold_7.pkl')
# compare_error(df_1,df_2,save=True,path='fig/custom model res/ISA_prosit_error_variation.png') # compare_error(df_1,df_2,save=True,path='fig/custom model res/ISA_prosit_error_variation.png')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment