Newer
Older
import sys
import os
import time
import argparse
import pandas as pd
import numpy as np
from data_preprocessing import Preprocessor
from features_extractor import feature_extractor
from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
from classifiers import classifiers, grid_params
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from evaluate_model import evaluate_model
from sklearn.model_selection import GridSearchCV
import configparser
parser = argparse.ArgumentParser()
parser.add_argument("dataPath", help="Path of the dataframe")
parser.add_argument("columnText", help="the column name of the text that should preproceed", default = 'content')
parser.add_argument("columnClass", help="ColumnClass the column name of the classes")
parser.add_argument("minOfInstancePerClass", help="minOfInstancePerClass the minimum of instance required for each class", type=int)
parser.add_argument("maxOfInstancePerClass", help="maxOfInstancePerClass the maximum of instance required resamling classes", type=int)
args = parser.parse_args()
dataPath = args.dataPath
columnText = args.columnText
columnClass = args.columnClass
minOfInstancePerClass = args.minOfInstancePerClass
maxOfInstancePerClass = args.maxOfInstancePerClass
if not os.path.exists(os.path.join('reports', columnClass)):
os.makedirs(os.path.join('reports', columnClass))
# create directory in the reports directory so save the classification results
dir_name_report = str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass)
if not os.path.exists(os.path.join('reports', columnClass, dir_name_report)):
os.makedirs(os.path.join('reports', columnClass, dir_name_report))
# create directory to save and load models
if not os.path.exists('models'):
os.makedirs('models')
# Reading data and preprocessings steps
preprocessor = Preprocessor()
df = pd.read_csv(dataPath, sep="\t")
df = resample_classes(df, columnClass, maxOfInstancePerClass)
#Read configuration file for retreiving parameters of features extractors
config = configparser.ConfigParser()
config.read('settings.conf')
vectorization_max_df = int(config.get('vectorizers','vectorization_max_df')) if config.get('vectorizers','vectorization_max_df').isdigit() else float(config.get('vectorizers','vectorization_max_df'))
vectorization_min_df = int(config.get('vectorizers','vectorization_min_df')) if config.get('vectorizers','vectorization_min_df').isdigit() else float(config.get('vectorizers','vectorization_min_df'))
vectorization_numberOfFeatures = int(config.get('vectorizers','vectorization_numberOfFeatures')) if config.get('vectorizers','vectorization_numberOfFeatures').isdigit() else None
doc2vec_vec_size = int(config.get('vectorizers','doc2vec_vec_size'))
max_epochs = int(config.get('vectorizers','max_epochs'))
doc2vec_min_count = int(config.get('vectorizers','doc2vec_min_count'))
doc2vec_dm = int(config.get('vectorizers','doc2vec_dm')) # If dm=1, ‘distributed memory’ (PV-DM) is used. Otherwise, distributed bag of words (PV-DBOW) is employed.
doc2vec_workers = int(config.get('vectorizers','doc2vec_workers'))
print("size after resampling, ",len(df))
#df = df[df[columnClass] != 'unclassified']
y = df[columnClass]
print(df.head())
print(df[columnClass].head())
train_x, test_x, train_y, test_y = train_test_split(df, y, test_size=0.33, random_state=42, stratify = y )
encoder = preprocessing.LabelEncoder()
train_y = encoder.fit_transform(train_y)
valid_y = encoder.fit_transform(test_y)
print("size training set, ",len(train_x))
print("size validation set, ",len(test_x))
for columnInput in [columnText, 'firstParagraph']:
print('Process: ' + columnInput)
extractor = feature_extractor(train_x, test_x, columnInput, columnClass)
features_techniques = [
('counter', extractor.count_vect(max_df = vectorization_max_df, min_df = vectorization_min_df, numberOfFeatures = vectorization_numberOfFeatures )),
('tf_idf', extractor.tf_idf(max_df = vectorization_max_df, min_df = vectorization_min_df, numberOfFeatures = vectorization_numberOfFeatures)),
('doc2vec', extractor.doc2vec(max_epochs, doc2vec_vec_size, doc2vec_min_count , doc2vec_dm))]
#case of full text
for feature_technique_name, features in features_techniques:
print("**** Classifier :", feature_technique_name)
# features has the train_x and the test_x after vectorization
train_x, test_x = features
for tmp_clf, tmp_grid_params in zip(classifiers, grid_params):
clf_name, clf = tmp_clf
grid_param_name, grid_param = tmp_grid_params
print(clf_name, clf, grid_param_name, grid_param)
model_file_name = columnInput + '_' +feature_technique_name + '_' + clf_name+ str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass) +".pkl"
clf = GridSearchCV(clf, grid_param, refit = True, verbose = 3, n_jobs=-1)
report, accuracy, weighted_avg = evaluate_model(clf, test_x, valid_y, y_pred, valid_y, [str(e) for e in encoder.transform(encoder.classes_)], encoder.classes_, os.path.join('reports', columnClass, dir_name_report, file_name_report)+'.pdf')
with open(os.path.join('./models',columnClass, model_file_name), 'rb') as file:
with open(os.path.join('./models',columnClass, model_file_name), 'wb') as file:
#evaluate model
file_name_report = columnInput + '_' +feature_technique_name + '_' + clf_name
report, accuracy, weighted_avg = evaluate_model(clf, test_x, valid_y, y_pred, valid_y, [str(e) for e in encoder.transform(encoder.classes_)], encoder.classes_, os.path.join('reports', columnClass, dir_name_report, file_name_report)+'.pdf')
report.to_csv(os.path.join('reports', columnClass, dir_name_report, file_name_report+'.csv'))
with open(os.path.join('reports', columnClass, dir_name_report, file_name_report+'.txt'), 'w') as f:
sys.stdout = f # Change the standard output to the file we created.
print('accuracy : {}'.format(accuracy))
print('weighted_Precision : {}'.format(weighted_avg['precision']))
print('weighted_Recall : {}'.format(weighted_avg['recall']))
print('weighted_F-score : {}'.format(weighted_avg['f1-score']))
print('weighted_Support : {}'.format(weighted_avg['support']))
print(dict(zip(encoder.classes_, encoder.transform(encoder.classes_))))
print('training time : {}'.format(training_time))
try:
print('best parameters : {}'.format(clf.best_params_))
except AttributeError:
pass
#sys.stdout = sys.stdout # Reset the standard output to its original value
sys.stdout = sys.__stdout__